- Browse by Author
Browsing by Author "Boss, Rhett"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Motor Learning in a Complex Motor Task Is Unaffected by Three Consecutive Days of Transcranial Alternating Current Stimulation(MDPI, 2024-07-23) Wilkins, Erik W.; Pantovic, Milan; Noorda, Kevin J.; Premyanov, Mario I.; Boss, Rhett; Davidson, Ryder; Hagans, Taylor A.; Riley, Zachary A.; Poston, Brach; Exercise & Kinesiology, School of Health and Human SciencesTranscranial alternating current stimulation (tACS) delivered to the primary motor cortex (M1) can increase cortical excitability, entrain neuronal firing patterns, and increase motor skill acquisition in simple motor tasks. The primary aim of this study was to assess the impact of tACS applied to M1 over three consecutive days of practice on the motor learning of a challenging overhand throwing task in young adults. The secondary aim was to examine the influence of tACS on M1 excitability. This study implemented a double-blind, randomized, SHAM-controlled, between-subjects experimental design. A total of 24 healthy young adults were divided into tACS and SHAM groups and performed three identical experimental sessions that comprised blocks of overhand throwing trials of the right dominant arm concurrent with application of tACS to the left M1. Performance in the overhand throwing task was quantified as the endpoint error. Motor evoked potentials (MEPs) were assessed in the right first dorsal interosseus (FDI) muscle with transcranial magnetic stimulation (TMS) to quantify changes in M1 excitability. Endpoint error was significantly decreased in the post-tests compared with the pre-tests when averaged over the three days of practice (p = 0.046), but this decrease was not statistically significant between the tACS and SHAM groups (p = 0.474). MEP amplitudes increased from the pre-tests to the post-tests (p = 0.003), but these increases were also not different between groups (p = 0.409). Overall, the main findings indicated that tACS applied to M1 over multiple days does not enhance motor learning in a complex task to a greater degree than practice alone (SHAM).Item The Influence of Different Inter-Trial Intervals on the Quantification of Intracortical Facilitation in the Primary Motor Cortex(MDPI, 2023-11-02) Pantovic, Milan; Boss, Rhett; Noorda, Kevin J.; Premyanov, Mario I.; Aynlender, Daniel G.; Wilkins, Erik W.; Boss, Sage; Riley, Zachary A.; Poston, Brach; Exercise & Kinesiology, School of Health and Human SciencesIntracortical facilitation (ICF) is a paired-pulse transcranial magnetic stimulation (TMS) measurement used to quantify interneuron activity in the primary motor cortex (M1) in healthy populations and motor disorders. Due to the prevalence of the technique, most of the stimulation parameters to optimize ICF quantification have been established. However, the underappreciated methodological issue of the time between ICF trials (inter-trial interval; ITI) has been unstandardized, and different ITIs have never been compared in a paired-pulse TMS study. This is important because single-pulse TMS studies have found motor evoked potential (MEP) amplitude reductions over time during TMS trial blocks for short, but not long ITIs. The primary purpose was to determine the influence of different ITIs on the measurement of ICF. Twenty adults completed one experimental session that involved 4 separate ICF trial blocks with each utilizing a different ITI (4, 6, 8, and 10 s). Two-way ANOVAs indicated no significant ITI main effects for test MEP amplitudes, condition-test MEP amplitudes, and therefore ICF. Accordingly, all ITIs studied provided nearly identical ICF values when averaged over entire trial blocks. Therefore, it is recommended that ITIs of 4–6 s be utilized for ICF quantification to optimize participant comfort and experiment time efficiency.