- Browse by Author
Browsing by Author "Bosron, William F."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Effect of Inhibition of S-Nitrosoglutathione Reductase on the NF-κB Pathway(2009-09-30T19:08:58Z) Fears, Sharry L.; Sanghani, Sonal P.; Sanghani, Paresh C.; Bosron, William F.S-nitrosoglutathione reductase (GSNOR) also known as glutathione- dependent formaldehyde dehydrogenase (FDH), is a zinc-dependent dehydrogenase. GSNOR oxidizes long chain alcohols to an aldehyde with the help of a molecule of NAD+. GSNOR was initially identified as FDH because of its role in the formaldehyde detoxification pathway. The only S-nitrosothiol (SNO) substrate recognized by GSNOR is GSNO. A transnitrosation reaction transfers NO from nitrosylated proteins or S-nitrosothiols (RSNO) to glutathione to form S-nitrosoglutathione. This GSNO is finally converted to glutathione disulfide (GSSG) by a two step mechanism. Cellular GSNO is a nitric oxide reservoir that can either transfer to or remove from the proteins a NO group. Reduction of GSNO by GSNOR depletes this reservoir and therefore indirectly regulates protein nitrosylation. GSNOR inhibitors which can increase the basal GSNO levels will be another potential therapy. Several GSNOR inhibitors were identified in our laboratory and the aim of this study was to understand their cellular effects. One of the experiments studied the effect of the compound on protein-SNO. The role of nitric oxide in regulation of NF-κB pathway is reviewed by Bove and van der Vliet. We focused on identification of nitrosylated proteins using protein specific antibodies. We identified nitrosylation of IKKβ. So the question raised was whether nitrosylation of IKKβ affects its activity. IKKβ is responsible for phosphorylation of IκBα and phosphorylation of IκBα results in its degradation and activation of NF-κB pathway. Therefore, we studied the phosphorylation of IκBα in the presence of inhibitor C3. Results showed a dose-dependent decrease of pIκB. So the next question was whether the phosphorylation of IKKβ was affected by nitrosylation. We did not detect any change in pIKKβ with different concentrations of C3. The decreased degradation of IκBα caused by C3 translated into decreased NF-κB activity as seen by a dose-dependent decrease in amounts of ICAM-1 with increasing C3 concentration. This data supports the premise that the activity of transcription factor NF-κB is suppressed by inhibiting GSNOR with compound C3Item Effects of choline kinase activity on phospholipid metabolism and malignant phenotype of prostate cancer cells(2010-10) Bansal, Aditya; DeGrado, Timothy R.; Harris, Robert A. (Robert Allison), 1939-; Bosron, William F.; Klaunig, James E.High choline uptake and increased choline kinase activity have been reported in many cancers. This has motivated the use of choline as a biomarker for tumor imaging. Tumors in general are heterogeneous in nature with respect to oxygen tension. There are regions of hypoxia and normoxia that are expected to have different metabolism but regulation of choline metabolism under hypoxia is poorly understood. It is important to clarify the status of choline metabolism in hypoxic microenvironment as it will have an impact on potential of choline as a cancer biomarker. The primary goal was to determine the status of choline phosphorylation in hypoxic cancer cells and its effect on uptake of choline. This was examined by tracer studies in cancer cells exposed to hypoxia. It was observed that hypoxia universally inhibits choline uptake /phosphorylation in cancer cells. Decreased choline phosphorylation resulted in transient uptake of choline radiotracers in cultured cancer cells and 9L tumors suggesting potential problem in using choline as a biomarker for cancers in hypoxic microenvironment. To investigate the mechanism behind decrease in choline phosphorylation, steady state levels of choline metabolites were measured and choline kinase catalyzed choline phosphorylation step was found to be rate-limiting in PC-3 cells. This suggested that modulation in choline kinase levels can alter choline metabolism in hypoxic cancer cells. Expression and activity assays for choline kinase revealed that choline kinase expression is down-regulated in hypoxia. This regulation involved transcriptional level mediation by HIF1 at the conserved HRE7 site in choline kinase promoter. To further understand the importance of down-regulation of choline kinase in hypoxia, stable prostate cancer cell lines over-expressing choline kinase were generated. Effect of over-expression of choline kinase in hypoxia was evaluated in terms of malignant phenotypes like proliferation rate, anchorage independent growth and invasion potential. Both over-expression of choline kinase and hypoxia had a pronounced effect on malignant phenotypes of prostate cancer cells. Further study showed that increased choline kinase activity and hypoxic tumor microenvironment are important for progression of early-stage, androgen-dependent LNCaP prostate cancer cells but confer little survival advantage in undifferentiated, androgen-independent PC-3 prostate cancer cells.Item Human carboxylesterase 2 splice variants: expression, activity, and role in the metabolism of irinotecan and capecitabine(2009-02) Schiel, Marissa Ann; Bosron, William F.; Chiorean, E. Gabriela; Flockhart, David A.; Harrington, Maureen A.; Sanghani, Sonal P.Carboxylesterases (CES) are enzymes that metabolize a wide variety of compounds including esters, thioesters, carbamates, and amides. In humans there are three known carboxylesterase genes CES1, CES2, and CES3. Irinotecan (CPT-11) and capecitabine are important chemotherapeutic prodrugs that are used for the treatment of colorectal cancer. Of the three CES isoenzymes, CES2 has the highest catalytic efficiency for irinotecan activation. There is large inter-individual variation in response to treatment with irinotecan. Life-threatening late-onset diarrhea has been reported in approximately 13% of patients receiving irinotecan. Several studies have reported single nucleotide polymorphisms (SNPs) for the CES2 gene. However, there has been no consensus on the effect of different CES2 SNPs and their relationship to CES2 RNA expression or irinotecan hydrolase activity. Three CES2 mRNA transcripts of approximately 2kb,3kb, and 4kb have been identified by multi-tissue northern analysis. The expressed sequence tag (EST) database indicates that CES2 undergoes several splicing events that could generate up to six potential proteins. Four of the proteins CES2, CES2458-473, CES2+64, CES21-93 were studied to characterize their expression and activity. Multi-tissue northern analysis revealed that CES2+64 corresponds to the 4kb and 3kb transcripts while CES21-93 is located only in the 4 kb transcript. CES2458-473 is an inactive splice variant that accounts for approximately 6% of the CES2 transcripts in normal and tumor colon tissue. There is large inter-individual variation in CES2 expression in both tumor and normal colon samples. Characterization of CES2+64 identified the protein as normal CES2 indicating that the signal peptide is recognized in spite of the additional 64 amino acids at the N-terminus. Sub-cellular localization studies revealed that CES2 and CES2+64 localize to the ER, and CES21-93 localizes to the cytoplasm. To date CES2 SNP data has not provided any explanation for the high inter-individual variability in response to irinotecan treatment. Multi-tissue northern blots indicate that CES2 is expressed in a tissue specific manner. We have identified the CES2 variants which correspond to each mRNA transcript. This information will be critical to defining the role of CES2 variants in the different tissues.Item Mass Spectrometric Approaches to Probing the Redox Function of Ape1(2012-07-03) Delaplane, Sarah Ann; Georgiadis, Millie M.; Bosron, William F.; Witzmann, F. A. (Frank A.)Human apurinic/apyrimidinic endonuclease 1 (hApe1) is a multi-functional protein having two major functions: apurinic/apyrimidinic endonuclease activity for DNA damage repair and redox activity for gene regulation. Many studies have shown the action of Ape1 in the base excision repair pathway leading to cell survival. It has also been reported that Ape1 reduces a number of important transcription factors that are involved in cancer promotion and progression. Though the repair activity is well understood, the redox mechanism is not yet clear. What is known about Ape1 is its structure and that it contains seven cysteines (C65, C93, C99, C138, C208, C296, and C310), none of which are disulfide bonded. Two of these cysteines, C99 and C138, are solvent-accessible, and C65, C93, and C99 are located in the redox domain. It is believed that one or more cysteines are involved in the redox function and is hypothesized that hApe1 reduces the down-stream transcription factors by a disulfide exchange mechanism. E3330, (2E)-3-[5-(2,3-dimethoxy-6-methyl-1,4-benzoquninoyl)]2-nonyl-2-propenoic acid, is a specific inhibitor for the redox function of hApe1. The interaction mechanism is not known. Using N-Ethylmaleimide (NEM) chemical footprinting, combined with Hydrogen/Deuterium Exchange (HDX) data, we propose that a locally unfolded form coexists with the folded form in an equilibrium that is driven by irreversible NEM labeling, and that E3330 interacts with and stabilizes this locally unfolded form. This locally unfolded form is thereby proposed to be the redox-active form. We further support this claim with LC-MS/MS analysis showing an increase of disulfide bonds induced by E3330 among the cysteines in the redox domain, which would be too far apart from each other in the folded form to form a disulfide bond. We also studied three analogs of E3330. The need for an E3330 analog is to develop a more efficient and effective compound that would allow for sub-micromolar levels of activity (E3330 requires a micromolar amount). Study of the analogs will also allow us to gain perspective of the mechanism or mechanisms of E3330’s activity in Ape1’s redox function.