- Browse by Author
Browsing by Author "Borschel, Gregory H."
Now showing 1 - 10 of 16
Results Per Page
Sort Options
Item A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair(Wolters Kluwer, 2024) Daeschler, Simeon C.; So, Katelyn J. W.; Feinberg, Konstantin; Manoraj, Marina; Cheung, Jenny; Zhang, Jennifer; Mirmoeini, Kaveh; Santerre, J. Paul; Gordon, Tessa; Borschel, Gregory H.; Surgery, School of MedicineAxonal regeneration following surgical nerve repair is slow and often incomplete, resulting in poor functional recovery which sometimes contributes to lifelong disability. Currently, there are no FDA-approved therapies available to promote nerve regeneration. Tacrolimus accelerates axonal regeneration, but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery. The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site, with suitable properties for scalable production and clinical application, aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure. Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days. Size and drug loading are adjustable for applications in small and large caliber nerves, and the wrap degrades within 120 days into biocompatible byproducts. Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80% compared with systemic delivery. Given its surgical suitability and preclinical efficacy and safety, this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery.Item Advancing Nerve Regeneration: Translational Perspectives of Tacrolimus (FK506)(MDPI, 2023-08-14) Daeschler, Simeon C.; Feinberg, Konstantin; Harhaus, Leila; Kneser, Ulrich; Gordon, Tessa; Borschel, Gregory H.; Ophthalmology, School of MedicinePeripheral nerve injuries have far-reaching implications for individuals and society, leading to functional impairments, prolonged rehabilitation, and substantial socioeconomic burdens. Tacrolimus, a potent immunosuppressive drug known for its neuroregenerative properties, has emerged in experimental studies as a promising candidate to accelerate nerve fiber regeneration. This review investigates the therapeutic potential of tacrolimus by exploring the postulated mechanisms of action in relation to biological barriers to nerve injury recovery. By mapping both the preclinical and clinical evidence, the benefits and drawbacks of systemic tacrolimus administration and novel delivery systems for localized tacrolimus delivery after nerve injury are elucidated. Through synthesizing the current evidence, identifying practical barriers for clinical translation, and discussing potential strategies to overcome the translational gap, this review provides insights into the translational perspectives of tacrolimus as an adjunct therapy for nerve regeneration.Item Biohacking Nerve Repair: Novel Biomaterials, Local Drug Delivery, Electrical Stimulation, and Allografts to Aid Surgical Repair(MDPI, 2024-07-31) Crabtree, Jordan R.; Mulenga, Chilando M.; Tran, Khoa; Feinberg, Konstantin; Santerre, J. Paul; Borschel, Gregory H.; Surgery, School of MedicineThe regenerative capacity of the peripheral nervous system is limited, and peripheral nerve injuries often result in incomplete healing and poor outcomes even after repair. Transection injuries that induce a nerve gap necessitate microsurgical intervention; however, even the current gold standard of repair, autologous nerve graft, frequently results in poor functional recovery. Several interventions have been developed to augment the surgical repair of peripheral nerves, and the application of functional biomaterials, local delivery of bioactive substances, electrical stimulation, and allografts are among the most promising approaches to enhance innate healing across a nerve gap. Biocompatible polymers with optimized degradation rates, topographic features, and other functions provided by their composition have been incorporated into novel nerve conduits (NCs). Many of these allow for the delivery of drugs, neurotrophic factors, and whole cells locally to nerve repair sites, mitigating adverse effects that limit their systemic use. The electrical stimulation of repaired nerves in the perioperative period has shown benefits to healing and recovery in human trials, and novel biomaterials to enhance these effects show promise in preclinical models. The use of acellular nerve allografts (ANAs) circumvents the morbidity of donor nerve harvest necessitated by the use of autografts, and improvements in tissue-processing techniques may allow for more readily available and cost-effective options. Each of these interventions aid in neural regeneration after repair when applied independently, and their differing forms, benefits, and methods of application present ample opportunity for synergistic effects when applied in combination.Item Combined local delivery of tacrolimus and stem cells in hydrogel for enhancing peripheral nerve regeneration(Wiley, 2021-07) Saffari, Tiam M.; Chan, Katelyn; Saffari, Sara; Zuo, Kevin J.; McGovern, Renee M.; Reid, Joel M.; Borschel, Gregory H.; Shin, Alexander Y.; Medicine, School of MedicineThe application of scaffold-based stem cell transplantation to enhance peripheral nerve regeneration has great potential. Recently, the neuroregenerative potential of tacrolimus (a U.S. Food and Drug Administration-approved immunosuppressant) has been explored. In this study, a fibrin gel-based drug delivery system for sustained and localized tacrolimus release was combined with rat adipose-derived mesenchymal stem cells (MSC) to investigate cell viability in vitro. Tacrolimus was encapsulated in poly(lactic-co-glycolic) acid (PLGA) microspheres and suspended in fibrin hydrogel, using concentrations of 0.01 and 100 ng/ml. Drug release over time was measured. MSCs were cultured in drug-released media collected at various days to mimic systemic exposure. MSCs were combined with (i) hydrogel only, (ii) empty PLGA microspheres in the hydrogel, (iii) 0.01, and (iv) 100 ng/ml of tacrolimus PLGA microspheres in the hydrogel. Stem cell presence and viability were evaluated. A sustained release of 100 ng/ml tacrolimus microspheres was observed for up to 35 days. Stem cell presence was confirmed and cell viability was observed up to 7 days, with no significant differences between groups. This study suggests that combined delivery of 100 ng/ml tacrolimus and MSCs in fibrin hydrogel does not result in cytotoxic effects and could be used to enhance peripheral nerve regeneration.Item Corneal Nerve Assessment by Aesthesiometry: History, Advancements, and Future Directions(MDPI, 2024-05-12) Crabtree, Jordan R.; Tannir, Shadia; Tran, Khoa; Boente, Charline S.; Ali, Asim; Borschel, Gregory H.; Surgery, School of MedicineThe measurement of corneal sensation allows clinicians to assess the status of corneal innervation and serves as a crucial indicator of corneal disease and eye health. Many devices are available to assess corneal sensation, including the Cochet–Bonnet aesthesiometer, the Belmonte Aesthesiometer, the Swiss Liquid Jet Aesthesiometer, and the newly introduced Corneal Esthesiometer Brill. Increasing the clinical use of in vivo confocal microscopy and optical coherence tomography will allow for greater insight into the diagnosis, classification, and monitoring of ocular surface diseases such as neurotrophic keratopathy; however, formal esthesiometric measurement remains necessary to assess the functional status of corneal nerves. These aesthesiometers vary widely in their mode of corneal stimulus generation and their relative accessibility, precision, and ease of clinical use. The development of future devices to optimize these characteristics, as well as further comparative studies between device types should enable more accurate and precise diagnosis and treatment of corneal innervation deficits. The purpose of this narrative review is to describe the advancements in the use of aesthesiometers since their introduction to clinical practice, compare currently available devices for assessing corneal innervation and their relative limitations, and discuss how the assessment of corneal innervation is crucial to understanding and treating pathologies of the ocular surface.Item Corneal Neurotization: Preoperative Patient Workup and Surgical Decision-making(Wolters Kluwer, 2023-10-11) Daeschler, Simeon C.; Woo, Jyh Haur; Hussein, Isra; Ali, Asim; Borschel, Gregory H.; Surgery, School of MedicineBackground: The use of sensory nerve transfers to the anesthetic cornea has transformed the treatment of neurotrophic keratopathy by restoring ocular surface sensation and activating dysfunctional epithelial repair mechanisms. However, despite numerous reports on surgical techniques, there is a scarcity of information on the interdisciplinary management, preoperative assessment, and surgical decision-making, which are equally critical to treatment success. Methods: This Special Topic presents a standardized, interdisciplinary preoperative workup based on our 10-year experience with corneal neurotization in 32 eyes of patients with neurotrophic keratopathy. Results: Our assessment includes a medical history review, ophthalmic evaluation, and systematic facial sensory donor nerve mapping for light touch and pain modalities. This approach enables evidence-based patient selection, optimal surgery timing, and suitable donor nerve identification, including backup options. Conclusions: Based on a decade-long experience, this special topic highlights the importance of interdisciplinary collaboration and provides a practical roadmap for optimizing patient selection and surgical decision-making in patients undergoing corneal neurotization.Item Dynamic Reconstruction of Facial Paralysis in Craniofacial Microsomia(Wolters Kluwer, 2022-04) Zuo, Kevin J.; Heinelt, Martina; Ho, Emily S.; Forrest, Christopher R.; Zuker, Ronald M.; Borschel, Gregory H.; Medicine, School of MedicineBACKGROUND: Craniofacial microsomia is associated with maxillomandibular hypoplasia, microtia, soft-tissue deficiency, and variable severity of cranial nerve dysfunction, most often of the facial nerve. This study evaluated the incidence of facial paralysis in patients with craniofacial microsomia and outcomes after free functioning muscle transfer for dynamic smile reconstruction. METHODS: A single-center, retrospective, cross-sectional study was performed from 1985 to 2018 to identify pediatric patients with craniofacial microsomia and severe facial nerve dysfunction who underwent dynamic smile reconstruction with free functioning muscle transfer. Preoperative and postoperative facial symmetry and oral commissure excursion during maximal smile were measured using photogrammetric facial analysis software. RESULTS: This study included 186 patients with craniofacial microsomia; 41 patients (21 male patients, 20 female patients) had documented facial nerve dysfunction (22 percent) affecting all branches (51 percent) or the mandibular branch only (24 percent). Patients with severe facial paralysis (n = 8) underwent smile reconstruction with a free functioning muscle transfer neurotized either with a cross-face nerve graft (n = 7) or with the ipsilateral motor nerve to masseter (n =1). All patients achieved volitional muscle contraction with improvement in lip symmetry and oral commissure excursion (median, 8 mm; interquartile range, 3 to 10 mm). The timing of orthognathic surgery and facial paralysis reconstruction was an important consideration in optimizing patient outcomes. CONCLUSIONS: The authors' institution's incidence of facial nerve dysfunction in children with craniofacial microsomia is 22 percent. Free functioning muscle transfer is a reliable option for smile reconstruction in children with craniofacial microsomia. To optimize outcomes, a novel treatment algorithm is proposed for craniofacial microsomia patients likely to require both orthognathic surgery and facial paralysis reconstruction.Item Foretinib mitigates cutaneous nerve fiber loss in experimental diabetic neuropathy(Springer Nature, 2022-05-19) Daeschler, Simeon C.; Zhang, Jennifer; Gordon, Tessa; Borschel, Gregory H.; Feinberg, Konstantin; Surgery, School of MedicineDiabetes is by far, the most common cause of neuropathy, inducing neurodegeneration of terminal sensory nerve fibers associated with loss of sensation, paresthesia, and persistent pain. Foretinib prevents die-back degeneration in cultured sensory and sympathetic neurons by rescuing mitochondrial activity and has been proven safe in prospective clinical trials. Here we aimed at investigating a potential neuroprotective effect of Foretinib in experimental diabetic neuropathy. A mouse model of streptozotocin induced diabetes was used that expresses yellow fluorescent protein (YFP) in peripheral nerve fibers under the thy-1 promoter. Streptozotocin-injected mice developed a stable diabetic state (blood glucose > 270 mg/dl), with a significant reduction of intraepidermal nerve fiber density by 25% at 5 weeks compared to the non-diabetic controls. When diabetic mice were treated with Foretinib, a significantly greater volume of the cutaneous nerve fibers (67.3%) in the plantar skin was preserved compared to vehicle treated (37.8%) and non-treated (44.9%) diabetic mice while proximal nerve fiber morphology was not affected. Our results indicate a neuroprotective effect of Foretinib on cutaneous nerve fibers in experimental diabetic neuropathy. As Foretinib treated mice showed greater weight loss compared to vehicle treated controls, future studies may define more sustainable treatment regimen and thereby may allow patients to take advantage of this neuroprotective drug in chronic neurodegenerative diseases like diabetic neuropathy.Item Mesenchymal stem cells and local tacrolimus delivery synergistically enhance neurite extension(Wiley, 2021) Saffari, Sara; Saffari, Tiam M.; Chan, Katelyn; Borschel, Gregory H.; Shin, Alexander Y.; Surgery, School of MedicineBackground: The aim of this study was to investigate the combined effect of mesenchymal stem cells (MSC) and local delivery of tacrolimus (FK506) on nerve regeneration when applied to nerve autografts and decellularized allografts. Methods: A three-dimensional in vitro compartmented cell culture system consisting of a neonatal dorsal root ganglion adjacent to a nerve graft was used to evaluate the regenerating neurites into the peripheral nerve scaffold. Nerve autografts and allografts were treated with (i) undifferentiated MSCs, (ii) FK506 (100 ng/mL) or (iii) both (N = 9/group). After 48 hours, neurite extension was measured to quantify nerve regeneration and stem cell viability was evaluated. Results: Stem cell viability was confirmed in all MSC-treated grafts. Neurite extension was superior in autografts treated with FK506, and MSCs and FK506 combined (p < 0.001 and p = 0.0001, respectively), and autografts treated with MSCs (p = 0.12) were comparable to untreated autografts. In allografts, FK506 treatment and combined treatment were superior to controls (p < 0.001 and p = 0.0001, respectively), and treatment with MSCs (p = 0.09) was comparable to controls. All autograft groups were superior compared to their respective allograft treatment group (p < 0.05) in neurite extension. Conclusions: Alone, either MSC or FK506 treatment improved neurite outgrowth, and combined they further enhanced neurite extension in both autografts and allografts.Item Optical tissue clearing enables rapid, precise and comprehensive assessment of three-dimensional morphology in experimental nerve regeneration research(Wolters Kluwer, 2022) Daeschler, Simeon C.; Zhang, Jennifer; Gordon, Tessa; Borschel, Gregory H.; Surgery, School of MedicineMorphological analyses are key outcome assessments for nerve regeneration studies but are historically limited to tissue sections. Novel optical tissue clearing techniques enabling three-dimensional imaging of entire organs at a subcellular resolution have revolutionized morphological studies of the brain. To extend their applicability to experimental nerve repair studies we adapted these techniques to nerves and their motor and sensory targets in rats. The solvent-based protocols rendered harvested peripheral nerves and their target organs transparent within 24 hours while preserving tissue architecture and fluorescence. The optical clearing was compatible with conventional laboratory techniques, including retrograde labeling studies, and computational image segmentation, providing fast and precise cell quantitation. Further, optically cleared organs enabled three-dimensional morphometry at an unprecedented scale including dermatome-wide innervation studies, tracing of intramuscular nerve branches or mapping of neurovascular networks. Given their wide-ranging applicability, rapid processing times, and low costs, tissue clearing techniques are likely to be a key technology for next-generation nerve repair studies. All procedures were approved by the Hospital for Sick Children's Laboratory Animal Services Committee (49871/9) on November 9, 2019.