- Browse by Author
Browsing by Author "Boothman, David A."
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Following Anticancer Drug Activity in Cell Lysates with DNA Devices(Elsevier, 2018-11) Kahanda, Dimithree; Singh, Naveen; Boothman, David A.; Slinker, Jason D.; Biochemistry and Molecular Biology, School of MedicineThere is a great need to track the selectivity of anticancer drug activity and to understand the mechanisms of associated biological activity. Here we focus our studies on the specific NQO1 bioactivatable drug, ß-lapachone, which is in several Phase I clinical trials to treat human non-small cell lung, pancreatic and breast cancers. Multi-electrode chips with electrochemically-active DNA monolayers are used to track anticancer drug activity in cellular lysates and correlate cell death activity with DNA damage. Cells were prepared from the triple-negative breast cancer (TNBC) cell line, MDA-MB-231 (231) to be proficient or deficient in expression of the NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme, which is overexpressed in most solid cancers and lacking in control healthy cells. Cells were lysed and added to chips, and the impact of β-lapachone (β-lap), an NQO1-dependent DNA-damaging drug, was tracked with DNA electrochemical signal changes arising from drug-induced DNA damage. Electrochemical DNA devices showed a 3.7-fold difference in the electrochemical responses in NQO1+ over NQO1− cell lysates, as well as 10–20-fold selectivity to catalase and dicoumarol controls that deactivate DNA damaging pathways. Concentration-dependence studies revealed that 1.4 µM β-lap correlated with the onset of cell death from viability assays and the midpoint of DNA damage on the chip, and 2.5 µM β-lap correlated with the midpoint of cell death and the saturation of DNA damage on the chip. Results indicate that these devices could inform therapeutic decisions for cancer treatment.Item IB-DNQ and Rucaparib dual treatment alters cell cycle regulation and DNA repair in triple negative breast cancer cells(bioRxiv, 2024-05-18) Runnebohm, Avery M.; Wijeratne, H. R. Sagara; Peck Justice, Sarah A.; Wijeratne, Aruna B.; Roy, Gitanjali; Singh, Naveen; Hergenrother, Paul; Boothman, David A.; Motea, Edward A.; Mosley, Amber L.; Biochemistry and Molecular Biology, School of MedicineBackground: Triple negative breast cancer (TNBC), characterized by the lack of three canonical receptors, is unresponsive to commonly used hormonal therapies. One potential TNBC-specific therapeutic target is NQO1, as it is highly expressed in many TNBC patients and lowly expressed in non-cancer tissues. DNA damage induced by NQO1 bioactivatable drugs in combination with Rucaparib-mediated inhibition of PARP1-dependent DNA repair synergistically induces cell death. Methods: To gain a better understanding of the mechanisms behind this synergistic effect, we used global proteomics, phosphoproteomics, and thermal proteome profiling to analyze changes in protein abundance, phosphorylation and protein thermal stability. Results: Very few protein abundance changes resulted from single or dual agent treatment; however, protein phosphorylation and thermal stability were impacted. Histone H2AX was among several proteins identified to have increased phosphorylation when cells were treated with the combination of IB-DNQ and Rucaparib, validating that the drugs induced persistent DNA damage. Thermal proteome profiling revealed destabilization of H2AX following combination treatment, potentially a result of the increase in phosphorylation. Kinase substrate enrichment analysis predicted altered activity for kinases involved in DNA repair and cell cycle following dual agent treatment. Further biophysical analysis of these two processes revealed alterations in SWI/SNF complex association and tubulin / p53 interactions. Conclusions: Our findings that the drugs target DNA repair and cell cycle regulation, canonical cancer treatment targets, in a way that is dependent on increased expression of a protein selectively found to be upregulated in cancers without impacting protein abundance illustrate that multi-omics methodologies are important to gain a deeper understanding of the mechanisms behind treatment induced cancer cell death.Item Inhibition of TXNRD or SOD1 overcomes NRF2-mediated resistance to β-lapachone(Elsevier, 2020-02) Torrente, Laura; Prieto-Farigua, Nicolas; Falzone, Aimee; Elkins, Cody M.; Boothman, David A.; Haura, Eric B.; DeNicola, Gina M.; Biochemistry and Molecular Biology, School of MedicineAlterations in the NRF2/KEAP1 pathway result in the constitutive activation of NRF2, leading to the aberrant induction of antioxidant and detoxification enzymes, including NQO1. The NQO1 bioactivatable agent β-lapachone can target cells with high NQO1 expression but relies in the generation of reactive oxygen species (ROS), which are actively scavenged in cells with NRF2/KEAP1 mutations. However, whether NRF2/KEAP1 mutations influence the response to β-lapachone treatment remains unknown. To address this question, we assessed the cytotoxicity of β-lapachone in a panel of NSCLC cell lines bearing either wild-type or mutant KEAP1. We found that, despite overexpression of NQO1, KEAP1 mutant cells were resistant to β-lapachone due to enhanced detoxification of ROS, which prevented DNA damage and cell death. To evaluate whether specific inhibition of the NRF2-regulated antioxidant enzymes could abrogate resistance to β-lapachone, we systematically inhibited the four major antioxidant cellular systems using genetic and/or pharmacologic approaches. We demonstrated that inhibition of the thioredoxin-dependent system or copper-zinc superoxide dismutase (SOD1) could abrogate NRF2-mediated resistance to β-lapachone, while depletion of catalase or glutathione was ineffective. Interestingly, inhibition of SOD1 selectively sensitized KEAP1 mutant cells to β-lapachone exposure. Our results suggest that NRF2/KEAP1 mutational status might serve as a predictive biomarker for response to NQO1-bioactivatable quinones in patients. Further, our results suggest SOD1 inhibition may have potential utility in combination with other ROS inducers in patients with KEAP1/NRF2 mutations.Item MTHFD2 Blockade Enhances the Efficacy of β-Lapachone Chemotherapy With Ionizing Radiation in Head and Neck Squamous Cell Cancer(Frontiers, 2020-11-11) Shukla, Kirtikar; Singh, Naveen; Lewis, Joshua E.; Tsang, Allen W.; Boothman, David A.; Kemp, Melissa L.; Biochemistry and Molecular Biology, School of MedicineHead and Neck Squamous Cell Cancer (HNSCC) presents with multiple treatment challenges limiting overall survival rates and affecting patients' quality of life. Amongst these, resistance to radiation therapy constitutes a major clinical problem in HNSCC patients compounded by origin, location, and tumor grade that limit tumor control. While cisplatin is considered the standard radiosensitizing agent for definitive or adjuvant radiotherapy, in recurrent tumors or for palliative care other chemotherapeutics such as the antifolates methotrexate or pemetrexed are also being utilized as radiosensitizers. These drugs inhibit the enzyme dihydrofolate reductase, which is essential for DNA synthesis and connects the 1-C/folate metabolism to NAD(P)H and NAD(P)+ balance in cells. In previous studies, we identified MTHFD2, a mitochondrial enzyme involved in folate metabolism, as a key contributor to NAD(P)H levels in the radiation-resistant cells and HNSCC tumors. In the study presented here, we investigated the role of MTHFD2 in the response to radiation alone and in combination with β-lapachone, a NQO1 bioactivatable drug, which generates reactive oxygen species concomitant with NAD(P)H oxidation to NAD(P)+. These studies are performed in a matched HNSCC cell model of response to radiation: the radiation resistant rSCC-61 and radiation sensitive SCC-61 cells reported earlier by our group. Radiation resistant rSCC-61 cells had increased sensitivity to β-lapachone compared to SCC-61 and knockdown of MTHFD2 in rSCC-61 cells further potentiated the cytotoxicity of β-lapachone with radiation in a dose and time-dependent manner. rSCC-61 MTHFD2 knockdown cells irradiated and treated with β-lapachone showed increased PARP1 activation, inhibition of mitochondrial respiration, decreased respiration-linked ATP production, and increased mitochondrial superoxide and protein oxidation as compared to control rSCC-61 scrambled shRNA. Thus, these studies point to MTHFD2 as a potential target for development of radiosensitizing chemotherapeutics and potentiator of β-lapachone cytotoxicity.Item NQO1 targeting prodrug triggers innate sensing to overcome checkpoint blockade resistance(Springer Nature, 2019-07-19) Li, Xiaoguang; Liu, Zhida; Zhang, Anli; Han, Chuanhui; Shen, Aijun; Jiang, Lingxiang; Boothman, David A.; Qiao, Jian; Wang, Yang; Huang, Xiumei; Fu, Yang-Xin; Radiation Oncology, IU School of MedicineLack of proper innate sensing inside tumor microenvironment (TME) limits T cell-targeted immunotherapy. NAD(P)H:quinone oxidoreductase 1 (NQO1) is highly enriched in multiple tumor types and has emerged as a promising target for direct tumor-killing. Here, we demonstrate that NQO1-targeting prodrug β-lapachone triggers tumor-selective innate sensing leading to T cell-dependent tumor control. β-Lapachone is catalyzed and bioactivated by NQO1 to generate ROS in NQO1high tumor cells triggering oxidative stress and release of the damage signals for innate sensing. β-Lapachone-induced high mobility group box 1 (HMGB1) release activates the host TLR4/MyD88/type I interferon pathway and Batf3 dendritic cell-dependent cross-priming to bridge innate and adaptive immune responses against the tumor. Furthermore, targeting NQO1 is very potent to trigger innate sensing for T cell re-activation to overcome checkpoint blockade resistance in well-established tumors. Our study reveals that targeting NQO1 potently triggers innate sensing within TME that synergizes with immunotherapy to overcome adaptive resistance.Item NQO1-Bioactivatable Therapeutics as Radiosensitizers for Cancer Treatment(InTechOpen, 2020-02-13) Singh, Naveen; Motea, Edward A.; Huang, Xiumei; Starcher, Colton L.; Silver, Jayne; Yeh, I.-Ju; Pay, S. Louise; Su, Xiaolin; Russ, Kristen A.; Boothman, David A.; Bey, Erik A.; Biochemistry and Molecular Biology, School of MedicineDeveloping cancer therapeutics that radiosensitize in a tumor-selective manner remains an ideal. We developed a novel means of radiosensitization, exploiting NAD(P)H:Quinone Oxidoreductase 1 (NQO1) overexpression, and lowered catalase expression in solid human tumors using NQO1-bioactivatable drugs. Non-small cell lung (NSCLC), pancreatic (PDAC), prostate, and breast cancers overexpress NQO1. Ionizing radiation (IR) creates a spectrum of DNA lesions, including lethal DNA double-strand breaks (DSBs), and mutagenic but rarely lethal altered DNA bases and DNA single-strand breaks (SSBs). NQO1-bioactivatable drugs (e.g., β-lapachone and deoxynyboquiones) also promote abasic DNA lesions and SSBs. These hyperactivate poly (ADP-ribose) polymerase 1 (PARP1) and dramatically increase calcium release from the endoplasm reticulum (ER). Exposure of human cancer cells overexpressing NQO1 to NQO1-bioactivatable drugs immediately following IR, therefore, hyperactivates PARP1 synergistically, which in turn depletes NAD+ and ATP, inhibiting DSB repair. Ultimately, this leads to cell death. Combining IR with NQO1-bioactivatable drugs allows for a reduction in drug dose. Similarly, a lower IR dose can be used in combination with the drug, reducing the effects of IR on normal tissue. The combination treatment is effective in preclinical animal models with NSCLC, prostate, and head and neck xenografts, indicating that clinical trials are warranted.Item NQO1-Bioactivatable Therapeutics as Radiosensitizers for Cancer Treatment(IntechOpen, 2020) Singh, Naveen; Motea, Edward A.; Huang, Xiumei; Starcher, Colton L.; Silver, Jayne; Yeh, I-Ju; Pay, S. Louise; Su, Xiaolin; Russ, Kristen A.; Boothman, David A.; Bey, Erik A.; Biochemistry and Molecular Biology, School of MedicineDeveloping cancer therapeutics that radiosensitize in a tumor-selective manner remains an ideal. We developed a novel means of radiosensitization, exploiting NAD(P)H:Quinone Oxidoreductase 1 (NQO1) overexpression, and lowered catalase expression in solid human tumors using NQO1-bioactivatable drugs. Non-small cell lung (NSCLC), pancreatic (PDAC), prostate, and breast cancers overexpress NQO1. Ionizing radiation (IR) creates a spectrum of DNA lesions, including lethal DNA double-strand breaks (DSBs), and mutagenic but rarely lethal altered DNA bases and DNA single-strand breaks (SSBs). NQO1-bioactivatable drugs (e.g., β-lapachone and deoxynyboquiones) also promote abasic DNA lesions and SSBs. These hyperactivate poly (ADP-ribose) polymerase 1 (PARP1) and dramatically increase calcium release from the endoplasm reticulum (ER). Exposure of human cancer cells overexpressing NQO1 to NQO1-bioactivatable drugs immediately following IR, therefore, hyperactivates PARP1 synergistically, which in turn depletes NAD+ and ATP, inhibiting DSB repair. Ultimately, this leads to cell death. Combining IR with NQO1-bioactivatable drugs allows for a reduction in drug dose. Similarly, a lower IR dose can be used in combination with the drug, reducing the effects of IR on normal tissue. The combination treatment is effective in preclinical animal models with NSCLC, prostate, and head and neck xenografts, indicating that clinical trials are warranted.Item NQO1-dependent, tumor-selective radiosensitization of non-small cell lung cancers(American Association for Cancer Research, 2019-04-15) Motea, Edward A.; Huang, Xiumei; Singh, Naveen; Kilgore, Jessica; Williams, Noelle; Xie, Xian-Jin; Gerber, David E.; Beg, Muhammad Shaalan; Bey, Erik A.; Boothman, David A.; Biochemistry and Molecular Biology, School of MedicinePurpose: Development of tumor-specific therapies for the treatment of recalcitrant non-small cell lung cancers (NSCLCs) are urgently needed. Here, we investigated the ability of ß-lapachone (ß-lap, ARQ761 in clinical form) to selectively potentiate the effects of ionizing radiation (IR, 1–3 Gy) in NSCLCs that over-express NAD(P)H:Quinone Oxidoreductase 1 (NQO1). Experimental Design: The mechanism of lethality of low dose IR in combination with sublethal doses of ß-lap were evaluated in NSCLC lines in vitro and validated in subcutaneous and orthotopic xenograph models in vivo. Pharmacokinetics and pharmacodynamics (PK/PD) studies comparing single versus co-treatments were performed to validate therapeutic efficacy and mechanism of action. Results: ß-Lap administration after IR treatment hyperactivated PARP, greatly lowered NAD+/ATP levels, and increased DSB lesions over time in vitro. Radiosensitization of orthotopic, as well as subcutaneous, NSCLCs occurred with high apparent cures (>70%), even though 1/8 ß-lap doses reach subcutaneous versus orthotopic tumors. No methemoglobinemia or long-term toxicities were noted in any normal tissues, including mouse liver that expresses the highest level of NQO1 (~12 Units) of any normal tissue. PK/PD responses confirm that IR + ß-lap treatments hyperactivate PARP activity, greatly lower NAD+/ATP levels and dramatically inhibit DSB repair in exposed NQO1+ cancer tissue, while low NQO1 levels and high levels of Catalase in associated normal tissue were protective. Conclusion: Our data suggest that combination of sublethal doses of ß-lap and IR is a viable approach to selectively treat NQO1-overexpressing NSCLC and warrant a clinical trial using low-dose IR + ß-lapachone against patients with NQO1+ NSCLCs.Item Personalized Genome-Scale Metabolic Models Identify Targets of Redox Metabolism in Radiation-Resistant Tumors(Cell Press, 2021) Lewis, Joshua E.; Forshaw, Tom E.; Boothman, David A.; Furdui, Cristina M.; Kemp, Melissa L.; Biochemistry and Molecular Biology, School of MedicineRedox cofactor production is integral toward antioxidant generation, clearance of reactive oxygen species, and overall tumor response to ionizing radiation treatment. To identify systems-level alterations in redox metabolism that confer resistance to radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics data into personalized genome-scale flux balance analysis models of 716 radiation-sensitive and 199 radiation-resistant tumors. These models collectively predicted that radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH stores and reactive oxygen species (ROS) scavenging. Simulated genome-wide knockout screens agreed with experimental siRNA gene knockdowns in matched radiation-sensitive and radiation-resistant cancer cell lines, revealing gene targets involved in mitochondrial NADPH production, central carbon metabolism, and folate metabolism that allow for selective inhibition of glutathione production and H2O2 clearance in radiation-resistant cancers. This systems approach represents a significant advancement in developing quantitative genome-scale models of redox metabolism and identifying personalized metabolic targets for improving radiation sensitivity in individual cancer patients.Item Synergistic Effect of β-Lapachone and Aminooxyacetic Acid on Central Metabolism in Breast Cancer(MDPI, 2022-07-22) Chang, Mario C.; Mahar, Rohit; McLeod, Marc A.; Giacalone, Anthony G.; Huang, Xiumei; Boothman, David A.; Merritt, Matthew E.; Radiation Oncology, School of MedicineThe compound β-lapachone, a naturally derived naphthoquinone, has been utilized as a potent medicinal nutrient to improve health. Over the last twelve years, numerous reports have demonstrated distinct associations of β-lapachone and NAD(P)H: quinone oxidoreductase 1 (NQO1) protein in the amelioration of various diseases. Comprehensive research of NQO1 bioactivity has clearly confirmed the tumoricidal effects of β-lapachone action through NAD-keresis, in which severe DNA damage from reactive oxygen species (ROS) production triggers a poly-ADP-ribose polymerase-I (PARP1) hyperactivation cascade, culminating in NAD/ATP depletion. Here, we report a novel combination strategy with aminooxyacetic acid (AOA), an aspartate aminotransferase inhibitor that blocks the malate-aspartate shuttle (MAS) and synergistically enhances the efficacy of β-lapachone metabolic perturbation in NQO1 breast cancer. We evaluated metabolic turnover in MDA-MB-231 , MDA-MB-231 , MDA-MB-468, and T47D cancer cells by measuring the isotopic labeling of metabolites from a [U-C]glucose tracer. We show that β-lapachone treatment significantly hampers lactate secretion by ~85% in NQO1 cells. Our data demonstrate that combinatorial treatment decreases citrate, glutamate, and succinate enrichment by ~14%, ~50%, and ~65%, respectively. Differences in citrate, glutamate, and succinate fractional enrichments indicate synergistic effects on central metabolism based on the coefficient of drug interaction. Metabolic modeling suggests that increased glutamine anaplerosis is protective in the case of MAS inhibition.