- Browse by Author
Browsing by Author "Bollard, Catherine M."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Antigen-specific T cell responses correlate with decreased occurrence of acute GVHD in a multicenter contemporary cohort(Springer Nature, 2022) Cruz, Conrad Russell Y.; Bo, Na; Bakoyannis, Giorgos; Wright, Kaylor E.; Chorvinsky, Elizabeth A.; Powell, Allison; Bollard, Catherine M.; Jacobsohn, David; Cooke, Kenneth R.; Duncan, Christine; Krance, Robert M.; Carpenter, Paul A.; Rowan, Courtney M.; Paczesny, Sophie; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthItem A biomarker panel for risk of early respiratory failure following hematopoietic cell transplantation(American Society of Hematology, 2022) Rowan, Courtney M.; Smith, Lincoln; Sharron, Matthew P.; Loftis, Laura; Kudchadkar, Sapna; Duncan, Christine N.; Pike, Francis; Carpenter, Paul A.; Jacobsohn, David; Bollard, Catherine M.; Cruz, Conrad Russell Y.; Malatpure, Abhijeet; Farag, Sherif; Renbarger, Jamie; Little, Morgan R.; Gafken, Phillip R.; Krance, Robert A.; Cooke, Kenneth R.; Paczesny, Sophie; Pediatrics, School of MedicinePlasma biomarkers associated with respiratory failure (RF) following hematopoietic cell transplantation (HCT) have not been identified. Therefore, we aimed to validate early (7 and 14 days post-HCT) risk biomarkers for RF. Using tandem mass spectrometry, we compared plasma obtained at day 14 post-HCT from 15 patients with RF and 15 patients without RF. Six candidate proteins, from this discovery cohort or identified in the literature, were measured by enzyme-linked immunosorbent assay in day-7 and day-14 post-HCT samples from the training (n = 213) and validation (n = 119) cohorts. Cox proportional-hazard analyses with biomarkers dichotomized by Youden's index, as well as landmark analyses to determine the association between biomarkers and RF, were performed. Of the 6 markers, Stimulation-2 (ST2), WAP 4-disulfide core domain protein 2 (WFDC2), interleukin-6 (IL-6), and tumor necrosis factor receptor 1 (TNFR1), measured at day 14 post-HCT, had the most significant association with an increased risk for RF in the training cohort (ST2: hazard ratio [HR], 4.5, P = .004; WFDC2: HR, 4.2, P = .010; IL-6: HR, 6.9, P < .001; and TFNR1: HR, 6.1, P < .001) and in the validation cohort (ST2: HR, 23.2, P = .013; WFDC2: HR, 18.2, P = .019; IL-6: HR, 12.2, P = .014; and TFNR1: HR, 16.1, P = .001) after adjusting for the conditioning regimen. Using cause-specific landmark analyses, including days 7 and 14, high plasma levels of ST2, WFDC2, IL-6, and TNFR1 were associated with an increased HR for RF in the training and validation cohorts. These biomarkers were also predictive of mortality from RF. ST2, WFDC2, IL-6 and TNFR1 levels measured early posttransplantation improve risk stratification for RF and its related mortality.Item Introduction to a review series on emerging immunotherapies for hematologic diseases(American Society of Hematology, 2018-06-14) Paczesny, Sophie; Pavletic, Steven Z.; Bollard, Catherine M.; Pediatrics, School of MedicineImmune therapies are fast becoming paradigm-changing treatment options for patients with hematologic cancers. The field has grown exponentially as it expands to nonmalignant blood diseases. This Perspective article introduces the review series describing some of the latest advances in this field and highlighting some of the current obstacles and new opportunities for the future. Specifically, the series provides in-depth discussion on a selection of emerging immunotherapies now available to patients for hematologic diseases, including cancer vaccines, chimeric antigen receptor T cells, and immunotherapies to regulate inflammation in nonmalignant blood disorders.Item Safety and feasibility of virus-specific T cells derived from umbilical cord blood in cord blood transplant recipients(American Society of Hematology, 2019-07-23) Abraham, Allistair A.; John, Tami D.; Keller, Michael D.; Cruz, C. Russell N.; Salem, Baheyeldin; Roesch, Lauren; Liu, Hao; Hoq, Fahmida; Grilley, Bambi J.; Gee, Adrian P.; Dave, Hema; Jacobsohn, David A.; Krance, Robert A.; Shpall, Elizabeth. J.; Martinez, Caridad A.; Hanley, Patrick J.; Bollard, Catherine M.; Biostatistics, IU School of MedicineAdoptive transfer of virus-specific T cells (VSTs) has been shown to be safe and effective in stem cell transplant recipients. However, the lack of virus-experienced T cells in donor cord blood (CB) has prevented the development of ex vivo expanded donor-derived VSTs for recipients of this stem cell source. Here we evaluated the feasibility and safety of ex vivo expansion of CB T cells from the 20% fraction of the CB unit in pediatric patients receiving a single CB transplant (CBT). In 2 clinical trials conducted at 2 separate sites, we manufactured CB-derived multivirus-specific T cells (CB-VSTs) targeting Epstein-Barr virus (EBV), adenovirus, and cytomegalovirus (CMV) for 18 (86%) of 21 patients demonstrating feasibility. Manufacturing for 2 CB-VSTs failed to meet lot release because of insufficient cell recovery, and there was 1 sterility breach during separation of the frozen 20% fraction. Delayed engraftment was not observed in patients who received the remaining 80% fraction for the primary CBT. There was no grade 3 to 4 acute graft-versus-host disease (GVHD) associated with the infusion of CB-VSTs. None of the 7 patients who received CB-VSTs as prophylaxis developed end-organ disease from CMV, EBV, or adenovirus. In 7 patients receiving CB-VSTs for viral reactivation or infection, only 1 patient developed end-organ viral disease, which was in an immune privileged site (CMV retinitis) and occurred after steroid therapy for GVHD. Finally, we demonstrated the long-term persistence of adoptively transferred CB-VSTs using T-cell receptor-Vβ clonotype tracking, suggesting that CB-VSTs are a feasible addition to antiviral pharmacotherapy.