ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bolanis, Esther"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cardiac outflow tract anomalies
    (Wiley, 2013) Neeb, Zachary; Lajiness, Jacquelyn D.; Bolanis, Esther; Conway, Simon J.; Pediatrics, School of Medicine
    The mature outflow tract (OFT) is, in basic terms, a short conduit. It is a simple, although vital, connection situated between contracting muscular heart chambers and a vast embryonic vascular network. Unfortunately, it is also a focal point underlying many multifactorial congenital heart defects (CHDs). Through the use of various animal models combined with human genetic investigations, we are beginning to comprehend the molecular and cellular framework that controls OFT morphogenesis. Clear roles of neural crest cells (NCC) and second heart field (SHF) derivatives have been established during OFT formation and remodeling. The challenge now is to determine how the SHF and cardiac NCC interact, the complex reciprocal signaling that appears to be occurring at various stages of OFT morphogenesis, and finally how endocardial progenitors and primary heart field (PHF) communicate with both these colonizing extra-cardiac lineages. Although we are beginning to understand that this dance of progenitor populations is wonderfully intricate, the underlying pathogenesis and the spatiotemporal cell lineage interactions remain to be fully elucidated. What is now clear is that OFT alignment and septation are independent processes, invested via separate SHF and cardiac neural crest (CNC) lineages. This review will focus on our current understanding of the respective contributions of the SHF and CNC lineage during OFT development and pathogenesis.
  • Loading...
    Thumbnail Image
    Item
    Minireview: 12-Lipoxygenase and Islet β-Cell Dysfunction in Diabetes
    (The Endocrine Society, 2015-06) Tersey, Sarah A.; Bolanis, Esther; Holman, Theodore R.; Maloney, David J.; Nadler, Jerry L.; Mirmira, Raghavendra G.; Department of Pediatrics, IU School of Medicine
    The insulin producing islet β-cells have increasingly gained attention for their role in the pathogeneses of virtually all forms of diabetes. Dysfunction, de-differentiation, and/or death of β-cells are pivotal features in the transition from normoglycemia to hyperglycemia in both animal models of metabolic disease and humans. In both type 1 and type 2 diabetes, inflammation appears to be a central cause of β-cell derangements, and molecular pathways that modulate inflammation or the inflammatory response are felt to be prime targets of future diabetes therapy. The lipoxygenases (LOs) represent a class of enzymes that oxygenate cellular polyunsaturated fatty acids to produce inflammatory lipid intermediates that directly and indirectly affect cellular function and survival. The enzyme 12-LO is expressed in all metabolically active tissues, including pancreatic islets, and has received increasing attention for its role in promoting cellular inflammation in the setting of diabetes. Genetic deletion models of 12-LO in mice reveal striking protection from metabolic disease and its complications and an emerging body of literature has implicated its role in human disease. This review focuses on the evidence supporting the proinflammatory role of 12-LO as it relates to islet β-cells, and the potential for 12-LO inhibition as a future avenue for the prevention and treatment of metabolic disease.
  • Loading...
    Thumbnail Image
    Item
    Periostin Downregulation Is an Early Marker of Inhibited Neonatal Murine Lung Alveolar Septation
    (Wiley, 2013) Ahlfeld, Shawn K.; Gao, Yong; Wang, Jian; Horgusluoglu, Emrin; Bolanis, Esther; Clapp, D. Wade; Conway, Simon J.; Pediatrics, School of Medicine
    Background: Extreme preterm birth exposes the saccular lung to multiple teratogens, which ultimately retard alveolar development. Specifically, therapeutic high level oxygen supplementation adversely affects the premature lungs and results in blunted alveolarization. Prolonged hyperoxic lung injury has previously been shown to upregulate the matricellular protein Periostin (Postn) and stimulate ectopic accumulation of alpha smooth muscle actin (αSMA) myofibroblasts. Therapies that promote lung septation are lacking largely due to a lack of reliable early biomarkers of injury. Thus, we determined if Postn expression correlated with the initial appearance of myofibroblasts in the saccular lung and was required for early alveolar development. Methods: Lung development in C57BL/6J mice following room-air (RA, 21%-O₂) or continuous hyperoxia (85%-O₂) from birth (P0) through postnatal day P14 was correlated with Postn and αSMA expression. Alveolarization in Postn knockout mice exposed to room-air, 60%-, and 85%-O₂ was also examined. Results: Postn was widely expressed in distal lung septa through P2 to P4 and peak expression coincided with accumulation of saccular myofibroblasts. Initially, 85%-O₂ prematurely downregulated Postn and αSMA expression and suppressed proliferation before the first evidence of distal lung simplification at P4. By P14, chronic 85%-O₂ resulted in secondary upregulation of Postn and αSMA in blunted septa. Myofibroblast differentiation and alveolar development was unaffected in Postn null mice and acute 85%-O₂ exposure equally inhibited septal formation in Postn null and wild-type littermates. Conclusion: Postn expression is tightly correlated with the presence of αSMA-myofibroblasts and is a novel early biomarker of acutely inhibited alveolar septation during a crucial window of lung development.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University