- Browse by Author
Browsing by Author "Bocian, Brittany"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Direct antimicrobial susceptibility testing of positive blood cultures: A comparison of the accelerate Pheno™ and VITEK® 2 systems(Elsevier, 2019) Schneider, Jack G.; Wood, James B.; Smith, Nathan W.; Emery, Christopher L.; Davis, Thomas E.; Manaloor, John J.; Bocian, Brittany; Schmitt, Bryan H.; Medicine, School of MedicineObjectives To compare the performance and time-to-result (TTR) for antimicrobial susceptibility testing (AST) of positive blood cultures (PBC) using the Accelerate Pheno™ system (AXDX) and both a direct VITEK® 2 card inoculation workflow (DV2) and traditional FDA-approved VITEK® 2 workflow using subcultured isolates (V2). Methods Patient samples with monomicrobial Gram-negative rod bacteremia were tested on AXDX and DV2 in tandem, and compared to V2 AST results. Categorical agreement (CA) errors were adjudicated using broth microdilution. Instrumentation times and AST TTR were compared. Results AXDX and DV2 had a CA of 91.5% and 97.4%, respectively, compared to V2. Post-adjudication, AXDX, DV2, and V2 had CA of 94.7%, 95.7% and 96.5%, respectively. Instrument run times were 6.6 h, 9.4 h, and 9.2 h, and AST TTR were 8.9 h, 12.9 h and 35.5 h, respectively. Conclusions AXDX and DV2 AST is fast and reliable, which may have significant antimicrobial stewardship implications.Item Susceptibility Provision Enhances Effective De-escalation (SPEED): utilizing rapid phenotypic susceptibility testing in Gram-negative bloodstream infections and its potential clinical impact(Oxford Academic, 2019-01-01) Schneider, Jack G.; Wood, James B.; Schmitt, Bryan H.; Emery, Christopher L.; Davis, Thomas E.; Smith, Nathan W.; Blevins, Sarah; Hiles, Jon; Desai, Armisha; Wrin, Justin; Bocian, Brittany; Manaloor, John J.; Medicine, School of MedicineAbstract Objectives We evaluated the performance and time to result for pathogen identification (ID) and antimicrobial susceptibility testing (AST) of the Accelerate Pheno™ system (AXDX) compared with standard of care (SOC) methods. We also assessed the hypothetical improvement in antibiotic utilization if AXDX had been implemented. Methods Clinical samples from patients with monomicrobial Gram-negative bacteraemia were tested and compared between AXDX and the SOC methods of the VERIGENE® and Bruker MALDI Biotyper® systems for ID and the VITEK® 2 system for AST. Additionally, charts were reviewed to calculate theoretical times to antibiotic de-escalation, escalation and active and optimal therapy Results ID mean time was 21 h for MALDI-TOF MS, 4.4 h for VERIGENE® and 3.7 h for AXDX. AST mean time was 35 h for VITEK® 2 and 9.0 h for AXDX. For ID, positive percentage agreement was 95.9% and negative percentage agreement was 99.9%. For AST, essential agreement was 94.5% and categorical agreement was 93.5%. If AXDX results had been available to inform patient care, 25% of patients could have been put on active therapy sooner, while 78% of patients who had therapy optimized during hospitalization could have had therapy optimized sooner. Additionally, AXDX could have reduced time to de-escalation (16 versus 31 h) and escalation (19 versus 31 h) compared with SOC. Conclusions By providing fast and reliable ID and AST results, AXDX has the potential to improve antimicrobial utilization and enhance antimicrobial stewardship.