- Browse by Author
Browsing by Author "Blue, Elizabeth E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Advancements in APOE and dementia research: Highlights from the 2023 AAIC Advancements: APOE conference(Wiley, 2024) Kloske, Courtney M.; Belloy, Michael E.; Blue, Elizabeth E.; Bowman, Gregory R.; Carrillo, Maria C.; Chen, Xiaoying; Chiba-Falek, Ornit; Davis, Albert A.; Di Paolo, Gilbert; Garretti, Francesca; Gate, David; Golden, Lesley R.; Heinecke, Jay W.; Herz, Joachim; Huang, Yadong; Iadecola, Costantino; Johnson, Lance A.; Kanekiyo, Takahisa; Karch, Celeste M.; Khvorova, Anastasia; Koppes-den Hertog, Sascha J.; Lamb, Bruce T.; Lawler, Paige E.; Le Guen, Yann; Litvinchuk, Alexandra; Liu, Chia-Chen; Mahinrad, Simin; Marcora, Edoardo; Marino, Claudia; Michaelson, Danny M.; Miller, Justin J.; Morganti, Josh M.; Narayan, Priyanka S.; Naslavsky, Michel S.; Oosthoek, Marlies; Ramachandran, Kapil V.; Ramakrishnan, Abhirami; Raulin, Ana-Caroline; Robert, Aiko; Saleh, Rasha N. M.; Sexton, Claire; Shah, Nilomi; Shue, Francis; Sible, Isabel J.; Soranno, Andrea; Strickland, Michael R.; Tcw, Julia; Thierry, Manon; Tsai, Li-Huei; Tuckey, Ryan A.; Ulrich, Jason D.; van der Kant, Rik; Wang, Na; Wellington, Cheryl L.; Weninger, Stacie C.; Yassine, Hussein N.; Zhao, Na; Bu, Guojun; Goate, Alison M.; Holtzman, David M.; Neurology, School of MedicineIntroduction: The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research. Methods: In 2023, the Alzheimer's Association convened multidisciplinary researchers at the "AAIC Advancements: APOE" conference to discuss various topics, including apoE isoforms and their roles in AD pathogenesis, progress in apoE-targeted therapeutic strategies, updates on disease models and interventions that modulate apoE expression and function. Results: This manuscript presents highlights from the conference and provides an overview of opportunities for further research in the field. Discussion: Understanding apoE's multifaceted roles in AD pathogenesis will help develop targeted interventions for AD and advance the field of AD precision medicine. Highlights: APOE is a central player in the pathogenesis of Alzheimer's disease. APOE exerts a numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The AAIC Advancements: APOE conference encouraged discussions and collaborations on understanding the role of APOE.Item FAVOR: functional annotation of variants online resource and annotator for variation across the human genome(Oxford University Press, 2023) Zhou, Hufeng; Arapoglou, Theodore; Li, Xihao; Li, Zilin; Zheng, Xiuwen; Moore, Jill; Asok, Abhijith; Kumar, Sushant; Blue, Elizabeth E.; Buyske, Steven; Cox, Nancy; Felsenfeld, Adam; Gerstein, Mark; Kenny, Eimear; Li, Bingshan; Matise, Tara; Philippakis, Anthony; Rehm, Heidi L.; Sofia, Heidi J.; Snyder, Grace; NHGRI Genome Sequencing Program Variant Functional Annotation Working Group; Weng, Zhiping; Neale, Benjamin; Sunyaev, Shamil R.; Lin, Xihong; Biostatistics, School of Public HealthLarge biobank-scale whole genome sequencing (WGS) studies are rapidly identifying a multitude of coding and non-coding variants. They provide an unprecedented resource for illuminating the genetic basis of human diseases. Variant functional annotations play a critical role in WGS analysis, result interpretation, and prioritization of disease- or trait-associated causal variants. Existing functional annotation databases have limited scope to perform online queries and functionally annotate the genotype data of large biobank-scale WGS studies. We develop the Functional Annotation of Variants Online Resources (FAVOR) to meet these pressing needs. FAVOR provides a comprehensive multi-faceted variant functional annotation online portal that summarizes and visualizes findings of all possible nine billion single nucleotide variants (SNVs) across the genome. It allows for rapid variant-, gene- and region-level queries of variant functional annotations. FAVOR integrates variant functional information from multiple sources to describe the functional characteristics of variants and facilitates prioritizing plausible causal variants influencing human phenotypes. Furthermore, we provide a scalable annotation tool, FAVORannotator, to functionally annotate large-scale WGS studies and efficiently store the genotype and their variant functional annotation data in a single file using the annotated Genomic Data Structure (aGDS) format, making downstream analysis more convenient. FAVOR and FAVORannotator are available at https://favor.genohub.org.