- Browse by Author
Browsing by Author "Blosser, Rachel J."
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Bone Marrow Transplantation as a Therapy for Autosomal Dominant Osteopetrosis Type 2 in Mice(Wiley, 2022) Alam, Imranul; Gerard-O’Riley, Rita L.; Acton, Dena; Hardman, Sara L.; Murphy, Madeline; Alvarez, Marta B.; Blosser, Rachel J.; Sinn, Anthony; Srour, Edward F.; Kacena, Melissa A.; Econs, Michael J.; Medicine, School of MedicineAutosomal dominant osteopetrosis type II (ADO2) is a heritable bone disease of impaired osteoclastic bone resorption caused by missense mutations in the chloride channel 7 (CLCN7) gene. Clinical features of ADO2 include fractures, osteomyelitis of jaw, vision loss, and in severe cases, bone marrow failure. Currently, there is no effective therapy for ADO2, and patients usually receive symptomatic treatments. Theoretically, bone marrow transplantation (BMT), which is commonly used in recessive osteopetrosis, could be used to treat ADO2, although the frequency of complications related to BMT is quite high. We created an ADO2 knock-in (p.G213R mutation) mouse model on the 129 genetic background, and their phenotypes mimic the human disease of ADO2. To test whether BMT could restore osteoclast function and rescue the bone phenotypes in ADO2 mice, we transplanted bone marrow cells from 6-8 weeks old male WT donor mice into recipient female ADO2 mice. Also, to determine whether age at the time of transplant may play a role in transplant success, we performed BMT in young (12-week-old) and old (9-month-old) ADO2 mice. Our data indicate that ADO2 mice transplanted with WT marrow achieved more than 90% engraftment up to 6 months post-transplantation at both young and old ages. The in-vivo DXA data revealed that young ADO2 mice transplanted with WT marrow had significantly lower whole body and spine areal bone mineral density (aBMD) at month 6 post-transplantation compared to the ADO2 control mice. The old ADO2 mice also displayed significantly lower whole body, femur and spine aBMD at months 4 and 5 post-transplantation compared to the age-matched control mice. The in-vivo micro-CT data showed that ADO2 experimental mice transplanted with WT marrow had significantly lower BV/TV at months 2 and 4 post-transplantation compared to the ADO2 control mice at young age. In contrast, ADO2 control and experimental mice displayed similar BV/TV values for all post-transplantation time points at old age. In addition, serum CTX was significantly higher at month 2 post-transplantation in both young and old ADO2 experimental mice compared to the ADO2 control mice. Serum P1NP levels in young ADO2 experimental mice were significantly higher at baseline and month 2 post-transplantation compared to the ADO2 control mice. These data suggest that BMT may provide, at least, some beneficial effect at both young and adult ages.Item Characterization and assessment of lung and bone marrow derived endothelial cells and their bone regenerative potential(Frontiers, 2022) de Lima Perini, Mariana Moraes; Valuch, Conner R.; Dadwal, Ushashi C.; Awosanya, Olatundun D.; Mostardo, Sarah L.; Blosser, Rachel J.; Knox, Adam M.; McGuire, Anthony C.; Battina, Hanisha L.; Nazzal, Murad; Kacena, Melissa A.; Li, Jiliang; Biology, School of ScienceAngiogenesis is important for successful fracture repair. Aging negatively affects the number and activity of endothelial cells (ECs) and subsequently leads to impaired bone healing. We previously showed that implantation of lung-derived endothelial cells (LECs) improved fracture healing in rats. In this study, we characterized and compared neonatal lung and bone marrow-derived endothelial cells (neonatal LECs and neonatal BMECs) and further asses3sed if implantation of neonatal BMECs could enhance bone healing in both young and aged mice. We assessed neonatal EC tube formation, proliferation, and wound migration ability in vitro in ECs isolated from the bone marrow and lungs of neonatal mice. The in vitro studies demonstrated that both neonatal LECs and neonatal BMECs exhibited EC traits. To test the function of neonatal ECs in vivo, we created a femoral fracture in young and aged mice and implanted a collagen sponge to deliver neonatal BMECs at the fracture site. In the mouse fracture model, endochondral ossification was delayed in aged control mice compared to young controls. Neonatal BMECs significantly improved endochondral bone formation only in aged mice. These data suggest BMECs have potential to enhance aged bone healing. Compared to LECs, BMECs are more feasible for translational cell therapy and clinical applications in bone repair. Future studies are needed to examine the fate and function of BMECs implanted into the fracture sites.Item Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing(Springer, 2014-01) Radovich, Milan; Clare, Susan E.; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A.; Solzak, Jeffrey P.; Kassem, Nawal; Mathieson, Theresa; V. Storniolo, Anna Maria; Rufenbarger, Connie; Lillemoe, Heather A.; Blosser, Rachel J.; Choi, Mi Ran; Sauder, Candice A.; Doxey, Diane; Henry, Jill E.; Hilligoss, Eric E.; Sakarya, Onur; Hyland, Fiona C.; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W.; Schneider, Bryan P.; Department of Surgery, IU School of MedicineTriple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos.Item Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease(American Association of Immunologists, 2014-12-01) Reyes, Luz M.; Estrada, Jose L; Wang, Zheng Yu; Blosser, Rachel J.; Smith, Rashod F.; Sidner, Richard A.; Paris, Leela L.; Blankenship, Ross L.; Ray, Caitlin N.; Miner, Aaron C.; Tector, Matthew; Tector, A. Joseph; Surgery, School of MedicinePigs are emerging as important large animal models for biomedical research, and they may represent a source of organs for xenotransplantation. The MHC is pivotal to the function of the immune system in health and disease, and it is particularly important in infection and transplant rejection. Pigs deficient in class I MHC could serve as important reagents to study viral immunity as well as allograft and xenograft rejection. In this study, we report the creation and characterization of class I MHC knockout pigs using the Cas9 nuclease and guide RNAs. Pig fetal fibroblasts were genetically engineered using Cas9 and guide RNAs, and class I MHC(-) cells were then used as nuclear donors for somatic cell nuclear transfer. We produced three piglets devoid of all cell surface class I proteins. Although these animals have reduced levels of CD4(-)CD8(+) T cells in peripheral blood, the pigs appear healthy and are developing normally. These pigs are a promising reagent for immunological research.Item Effects of diet, BMP-2 treatment, and femoral skeletal injury on endothelial cells derived from the ipsilateral and contralateral limbs(Wiley, 2022) Dadwal, Ushashi C.; Staut, Caio de Andrade; Tewari, Nikhil P.; Awosanya, Olatundun D.; Mendenhall, Stephen K.; Valuch, Conner R.; Nagaraj, Rohit U.; Blosser, Rachel J.; Li, Jiliang; Kacena, Melissa Ann; Orthopaedic Surgery, School of MedicineType 2 diabetes (T2D) results in physiological and structural changes in bone, contributing to poor fracture healing. T2D compromises microvascular performance, which can negatively impact bone regeneration as angiogenesis is required for new bone formation. We examined the effects of bone morphogenetic protein-2 (BMP-2) administered locally at the time of femoral segmental bone defect (SBD) surgery, and its angiogenic impacts on endothelial cells (ECs) isolated from the ipsilateral or contralateral tibia in T2D mice. Male C57BL/6 mice were fed either a low fat diet (LFD) or high fat diet (HFD) starting at 8 weeks. After 12 weeks, the T2D phenotype in HFD mice was confirmed via glucose and insulin tolerance testing and echoMRI, and all mice underwent SBD surgery. Mice were treated with BMP-2 (5μg) or saline at the time of surgery. Three weeks post-surgery, bone marrow ECs were isolated from ipsilateral and contralateral tibias, and proliferation, angiogenic potential, and gene expression of the cells was analyzed. BMP-2 treatment increased EC proliferation by 2 fold compared to saline in LFD contralateral tibia ECs, but no changes were seen in surgical tibia EC proliferation. BMP-2 treatment enhanced vessel-like structure formation in HFD mice whereas, the opposite was observed in LFD mice. Still, in BMP-2 treated LFD mice, ipsilateral tibia ECs increased expression of CD31, FLT-1, ANGPT1, and ANGPT2. These data suggest that the modulating effects of T2D and BMP-2 on the microenvironment of bone marrow ECs may differentially influence angiogenic properties at the fractured limb versus the contralateral limb.Item The Effects of High Fat Diet, Bone Healing, and BMP-2 Treatment on Endothelial Cell Growth and Function(Elsevier, 2021-05) Bhatti, Fazal Ur Rehman; Dadwal, Ushashi C.; Valuch, Conner R.; Tewari, Nikhil P.; Awosanya, Olatundun D.; Staut, Caio de Andrade; Sun, Seungyup; Mendenhall, Stephen K.; Perugini, Anthony J., III; Nagaraj, Rohit U.; Battini, Hanisha L.; Nazzal, Murad K.; Blosser, Rachel J.; Maupin, Kevin A.; Childress, Paul J.; Li, Jiliang; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineAngiogenesis is a vital process during the regeneration of bone tissue. The aim of this study was to investigate angiogenesis at the fracture site as well as at distal locations from obesity-induced type 2 diabetic mice that were treated with bone morphogenetic protein-2 (BMP-2, local administration at the time of surgery) to heal a femoral critical sized defect (CSD) or saline as a control. Mice were fed a high fat diet (HFD) to induce a type 2 diabetic-like phenotype while low fat diet (LFD) animals served as controls. Endothelial cells (ECs) were isolated from the lungs (LECs) and bone marrow (BMECs) 3 weeks post-surgery, and the fractured femurs were also examined. Our studies demonstrate that local administration of BMP-2 at the fracture site in a CSD model results in complete bone healing within 3 weeks for all HFD mice and 66.7% of LFD mice, whereas those treated with saline remain unhealed. At the fracture site, vessel parameters and adipocyte numbers were significantly increased in BMP-2 treated femurs, irrespective of diet. At distal sites, LEC and BMEC proliferation was not altered by diet or BMP-2 treatment. HFD increased the tube formation ability of both LECs and BMECs. Interestingly, BMP-2 treatment at the time of surgery reduced tube formation in LECs and humeri BMECs. However, migration of BMECs from HFD mice treated with BMP-2 was increased compared to BMECs from HFD mice treated with saline. BMP-2 treatment significantly increased the expression of CD31, FLT-1, and ANGPT2 in LECs and BMECs in LFD mice, but reduced the expression of these same genes in HFD mice. To date, this is the first study that depicts the systemic influence of fracture surgery and local BMP-2 treatment on the proliferation and angiogenic potential of ECs derived from the bone marrow and lungs.Item Megakaryocytes promote osteoclastogenesis in aging(Impact Journals, 2020-07-07) Kanagasabapathy, Deepa; Blosser, Rachel J.; Maupin, Kevin A.; Hong, Jung Min; Alvarez, Marta; Ghosh, Joydeep; Mohamad, Safa F.; Aguilar-Perez, Alexandra; Srour, Edward F.; Kacena, Melissa A.; Bruzzaniti, Angela; Orthopaedic Surgery, School of MedicineMegakaryocytes (MKs) support bone formation by stimulating osteoblasts (OBs) and inhibiting osteoclasts (OCs). Aging results in higher bone resorption, leading to bone loss. Whereas previous studies showed the effects of aging on MK-mediated bone formation, the effects of aging on MK-mediated OC formation is poorly understood. Here we examined the effect of thrombopoietin (TPO) and MK-derived conditioned media (CM) from young (3-4 months) and aged (22-25 months) mice on OC precursors. Our findings showed that aging significantly increased OC formation in vitro. Moreover, the expression of the TPO receptor, Mpl, and circulating TPO levels were elevated in the bone marrow cavity. We previously showed that MKs from young mice secrete factors that inhibit OC differentiation. However, rather than inhibiting OC development, we found that MKs from aged mice promote OC formation. Interestingly, these age-related changes in MK functionality were only observed using female MKs, potentially implicating the sex steroid, estrogen, in signaling. Further, RANKL expression was highly elevated in aged MKs suggesting MK-derived RANKL signaling may promote osteoclastogenesis in aging. Taken together, these data suggest that modulation in TPO-Mpl expression in bone marrow and age-related changes in the MK secretome promote osteoclastogenesis to impact skeletal aging.Item Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank(Biomed Central, 2014) Pardo, Ivanesa; Lillemoe, Heather A.; Blosser, Rachel J.; Choi, MiRan; Sauder, Candice A. M.; Doxey, Diane K.; Mathieson, Theresa; Hancock, Bradley A.; Baptiste, Dadrie; Atale, Rutuja; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Storniolo, Anna Maria V.; Zheng, Faye; Doerge, R. W.; Liu, Yunlong; Badve, Sunil S.; Radovich, Milan; Clare, Susan E.; Pathology and Laboratory Medicine, School of MedicineIntroduction Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Methods Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). Results In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. Conclusions We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle.Item Osteoclast-mediated bone loss observed in a COVID-19 mouse model(2021-10-02) Awosanya, Olatundun D.; Dalloul, Christopher E.; Blosser, Rachel J.; Dadwal, Ushashi C.; Carozza, Mariel; Boschen, Karen; Klemsz, Michael J.; Johnston, Nancy A.; Bruzzaniti, Angela; Robinson, Christopher M.; Srour, Edward F.; Kacena, Melissa A.The consequences of SARS-CoV-2 infection on the musculoskeletal system represent a dangerous knowledge gap. Aging patients are at added risk for SARS-CoV-2 infection; therefore, a greater understanding of the resulting musculoskeletal sequelae of SARS-CoV-2 infection may help guide clinical strategies. This study examined fundamental bone parameters among mice treated with escalating viral loads. Male C57BL/6J (WT, n = 17) and B6.Cg-Tg(K18-ACE2)2Prlmn/J mice (K18-hACE2 transgenic mice, n = 21) expressing human ACE2 (TG) were divided into eight groups (n = 4-6/group) and subjected to intranasal dosing of 0, 1 × 103, 1 × 104, and 1 × 105 PFU (plaque forming units) of human SARS-CoV-2. Animal health was assessed daily by veterinary staff using established and validated scoring criteria (activity, posture, body condition scores and body weight). We report here that mock and WT infected mice were healthy and completed the study, surviving until 12-14 days post infection (dpi). In contrast, the TG mice infected with 1 × 105 PFU all experienced severe health declines that necessitated early euthanasia (6-7 dpi). For TG mice infected with 1 × 104 PFU, 2 mice were also euthanized after 7 dpi, while 3 mice showed signs of moderate disease at day 6 dpi, but recovered fully by day 11 dpi. Four of the 5 TG mice that were infected with 1 × 103 PFU remained healthy throughout the study. This suggests that our study mimics what is seen during human disease, where some patients develop severe disease resulting in death, while others have moderate to severe disease but recover, and others are asymptomatic. At necropsy, femurs were extracted and analyzed by μCT. No difference was found in μCT determined bone parameters among the WT groups. There was, however, a significant 24.4% decrease in trabecular bone volume fraction (p = 0.0009), 19.0% decrease in trabecular number (p = 0.004), 6.2% decrease in trabecular thickness (p = 0.04), and a 9.8% increase in trabecular separation (p = 0.04) among surviving TG mice receiving any viral load compared to non-infected controls. No differences in cortical bone parameters were detected. TRAP staining revealed surviving infected mice had a significant 64% increase in osteoclast number, a 27% increase in osteoclast surface, and a 38% increase in osteoclasts per bone surface. While more studies are needed to investigate the long-term consequences of SARS-CoV-2 infection on skeletal health, this study demonstrates a significant reduction in several bone parameters and corresponding robust increases in osteoclast number observed within 2 weeks post-infection in surviving asymptomatic and moderately affected mice.Item Osteoclast-mediated bone loss observed in a COVID-19 mouse model(Elsevier, 2022-01) Awosanya, Olatundun D.; Dalloul, Christopher E.; Blosser, Rachel J.; Dadwal, Ushashi C.; Carozza, Mariel; Boschen, Karen; Klemsz, Michael J.; Johnston, Nancy A.; Bruzzaniti, Angela; Robinson, Christopher M.; Srour, Edward F.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineThe consequences of SARS-CoV-2 infection on the musculoskeletal system represent a dangerous knowledge gap. Aging patients are at added risk for SARS-CoV-2 infection; therefore, a greater understanding of the resulting musculoskeletal sequelae of SARS-CoV-2 infection may help guide clinical strategies. This study examined fundamental bone parameters among mice treated with escalating viral loads. Male C57BL/6J (WT, n = 17) and B6.Cg-Tg(K18-ACE2)2Prlmn/J mice (K18-hACE2 transgenic mice, n = 21) expressing human ACE2 (TG) were divided into eight groups (n = 4-6/group) and subjected to intranasal dosing of 0, 1 × 103, 1 × 104, and 1 × 105 PFU (plaque forming units) of human SARS-CoV-2. Animal health was assessed daily by veterinary staff using established and validated scoring criteria (activity, posture, body condition scores and body weight). We report here that mock and WT infected mice were healthy and completed the study, surviving until 12-14 days post infection (dpi). In contrast, the TG mice infected with 1 × 105 PFU all experienced severe health declines that necessitated early euthanasia (6-7 dpi). For TG mice infected with 1 × 104 PFU, 2 mice were also euthanized after 7 dpi, while 3 mice showed signs of moderate disease at day 6 dpi, but recovered fully by day 11 dpi. Four of the 5 TG mice that were infected with 1 × 103 PFU remained healthy throughout the study. This suggests that our study mimics what is seen during human disease, where some patients develop severe disease resulting in death, while others have moderate to severe disease but recover, and others are asymptomatic. At necropsy, femurs were extracted and analyzed by μCT. No difference was found in μCT determined bone parameters among the WT groups. There was, however, a significant 24.4% decrease in trabecular bone volume fraction (p = 0.0009), 19.0% decrease in trabecular number (p = 0.004), 6.2% decrease in trabecular thickness (p = 0.04), and a 9.8% increase in trabecular separation (p = 0.04) among surviving TG mice receiving any viral load compared to non-infected controls. No differences in cortical bone parameters were detected. TRAP staining revealed surviving infected mice had a significant 64% increase in osteoclast number, a 27% increase in osteoclast surface, and a 38% increase in osteoclasts per bone surface. While more studies are needed to investigate the long-term consequences of SARS-CoV-2 infection on skeletal health, this study demonstrates a significant reduction in several bone parameters and corresponding robust increases in osteoclast number observed within 2 weeks post-infection in surviving asymptomatic and moderately affected mice.