ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Blommaert, Jeroen"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Brain gray matter reduction and premature brain aging after breast cancer chemotherapy: a longitudinal multicenter data pooling analysis
    (Springer, 2023) de Ruiter, Michiel B.; Deardorff, Rachael L.; Blommaert, Jeroen; Chen, Bihong T.; Dumas, Julie A.; Schagen, Sanne B.; Sunaert, Stefan; Wang, Lei; Cimprich, Bernadine; Peltier, Scott; Dittus, Kim; Newhouse, Paul A.; Silverman, Daniel H.; Schroyen, Gwen; Deprez, Sabine; Saykin, Andrew J.; McDonald, Brenna C.; Radiology and Imaging Sciences, School of Medicine
    Brain gray matter (GM) reductions have been reported after breast cancer chemotherapy, typically in small and/or cross-sectional cohorts, most commonly using voxel-based morphometry (VBM). There has been little examination of approaches such as deformation-based morphometry (DBM), machine-learning-based brain aging metrics, or the relationship of clinical and demographic risk factors to GM reduction. This international data pooling study begins to address these questions. Participants included breast cancer patients treated with (CT+, n = 183) and without (CT-, n = 155) chemotherapy and noncancer controls (NC, n = 145), scanned pre- and post-chemotherapy or comparable intervals. VBM and DBM examined GM volume. Estimated brain aging was compared to chronological aging. Correlation analyses examined associations between VBM, DBM, and brain age, and between neuroimaging outcomes, baseline age, and time since chemotherapy completion. CT+ showed longitudinal GM volume reductions, primarily in frontal regions, with a broader spatial extent on DBM than VBM. CT- showed smaller clusters of GM reduction using both methods. Predicted brain aging was significantly greater in CT+ than NC, and older baseline age correlated with greater brain aging. Time since chemotherapy negatively correlated with brain aging and annual GM loss. This large-scale data pooling analysis confirmed findings of frontal lobe GM reduction after breast cancer chemotherapy. Milder changes were evident in patients not receiving chemotherapy. CT+ also demonstrated premature brain aging relative to NC, particularly at older age, but showed evidence for at least partial GM recovery over time. When validated in future studies, such knowledge could assist in weighing the risks and benefits of treatment strategies.
  • Loading...
    Thumbnail Image
    Item
    The impact of mindfulness on working memory-related brain activation in breast cancer survivors with cognitive complaints
    (Springer, 2025) Melis, Michelle; Blommaert, Jeroen; Van der Gucht, Katleen; Smeets, Ann; McDonald, Brenna C.; Sunaert, Stefan; Smith, Andra; Deprez, Sabine; Radiology and Imaging Sciences, School of Medicine
    Purpose: Cancer-related cognitive impairment (CRCI) has been associated with altered brain activation after chemotherapy in areas related to working memory. Hence, improving working memory capacity and associated brain activation might aid in the recovery of CRCI. In this study, we investigated the potential of a mindfulness-based intervention (MBI) to impact working memory-related brain activation. Methods: Female breast cancer survivors reporting cognitive complaints (N=117) were randomized into a mindfulness (n=43; MBI), physical training (n=36; PT), or waitlist control condition (n=38; WL). Participants completed MRI scans before the intervention, immediately after, and three months post-intervention. Task-based functional MRI was used to measure differences between groups over time in working memory-related brain activation while performing a visual-verbal n-back task. Results: Data of 83 participants (32/26/25 MBI/PT/WL) was included. Compared to the waitlist group, MBI participants showed reduced task-related activation in the right middle frontal and angular gyrus and increased activation in the right dorsal posterior cingulate cortex over time. Compared to the physical training group, MBI participants showed reduced brain activation in the bilateral superior parietal lobule and right dorsal anterior cingulate cortex over time. No differences between physical training and no intervention were identified. Conclusion: This study showed that an 8-week mindfulness-based intervention can significantly alter brain activation across brain regions involved in working memory, attentional control, and emotion processing during performance of a working memory task. This might aid in the recovery of CRCI. Implications for cancer survivors: Mindfulness might alter brain activation patterns while performing a working memory task, which might ultimately aid in restoring higher order cognitive functions.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University