- Browse by Author
Browsing by Author "Bleher, Pavel, 1947-"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix models(2013-11-06) Bothner, Thomas Joachim; Its, Alexander R.; Bleher, Pavel, 1947-; Tarasov, Vitaly; Eremenko, Alexandre; Mukhin, EvgenyWe study the one-parameter family of determinants $det(I-\gamma K_{PII}),\gamma\in\mathbb{R}$ of an integrable Fredholm operator $K_{PII}$ acting on the interval $(-s,s)$ whose kernel is constructed out of the $\Psi$-function associated with the Hastings-McLeod solution of the second Painlev\'e equation. In case $\gamma=1$, this Fredholm determinant describes the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we evaluate the large $s$-asymptotics of $\det(I-\gamma K_{PII})$ for all values of the real parameter $\gamma$.Item Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice(2011-03-09) Liechty, Karl Edmund; Bleher, Pavel, 1947-; Its, Alexander R.; Lempert, Lazlo; Kitchens, Bruce, 1953-In this dissertation the partition function, $Z_n$, for the six-vertex model with domain wall boundary conditions is solved in the thermodynamic limit in various regions of the phase diagram. In the ferroelectric phase region, we show that $Z_n=CG^nF^{n^2}(1+O(e^{-n^{1-\ep}}))$ for any $\ep>0$, and we give explicit formulae for the numbers $C, G$, and $F$. On the critical line separating the ferroelectric and disordered phase regions, we show that $Z_n=Cn^{1/4}G^{\sqrt{n}}F^{n^2}(1+O(n^{-1/2}))$, and we give explicit formulae for the numbers $G$ and $F$. In this phase region, the value of the constant $C$ is unknown. In the antiferroelectric phase region, we show that $Z_n=C\th_4(n\om)F^{n^2}(1+O(n^{-1}))$, where $\th_4$ is Jacobi's theta function, and explicit formulae are given for the numbers $\om$ and $F$. The value of the constant $C$ is unknown in this phase region. In each case, the proof is based on reformulating $Z_n$ as the eigenvalue partition function for a random matrix ensemble (as observed by Paul Zinn-Justin), and evaluation of large $n$ asymptotics for a corresponding system of orthogonal polynomials. To deal with this problem in the antiferroelectric phase region, we consequently develop an asymptotic analysis, based on a Riemann-Hilbert approach, for orthogonal polynomials on an infinite regular lattice with respect to varying exponential weights. The general method and results of this analysis are given in Chapter 5 of this dissertation.Item Superstable manifolds of invariant circles(2013-12-10) Kaschner, Scott R.; Roeder, Roland; Bleher, Pavel, 1947-; Misiurewicz, Michał, 1948-; Buzzard, Gregory; Mukhin, EvgenyLet f:X\rightarrow X be a dominant meromorphic self-map, where X is a compact, connected complex manifold of dimension n > 1. Suppose there is an embedded copy of \mathbb P^1 that is invariant under f, with f holomorphic and transversally superattracting with degree a in some neighborhood. Suppose also that f restricted to this line is given by z\rightarrow z^b, with resulting invariant circle S. We prove that if a ≥ b, then the local stable manifold W^s_loc(S) is real analytic. In fact, we state and prove a suitable localized version that can be useful in wider contexts. We then show that the condition a ≥ b cannot be relaxed without adding additional hypotheses by resenting two examples with a < b for which W^s_loc(S) is not real analytic in the neighborhood of any point.