- Browse by Author
Browsing by Author "Blake, Kathryn"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Correction: Opportunities to implement a sustainable genomic medicine program: lessons learned from the IGNITE Network(Springer Nature, 2021) Levy, Kenneth D.; Blake, Kathryn; Fletcher-Hoppe, Colette; Franciosi, James; Goto, Daisuke; Hicks, James K.; Holmes, Ann M.; Kanuri, Sri Harsha; Madden, Ebony B.; Musty, Michael D.; Orlando, Lori; Pratt, Victoria M.; Ramos, Michelle; Wu, Ryanne; Ginsburg, Geoffrey S.; Medicine, School of MedicineCorrection to: Genetics in Medicine 21:2019; 10.1038/s41436-018-0080-y; published online 12 July 2018 The original version of this Article contained an error in the spelling of the author Daisuke Goto, which was incorrectly given as Diasuke Goto. This has now been corrected in both the PDF and HTML versions of the Article.Item Correction: Opportunities to implement a sustainable genomic medicine program: lessons learned from the IGNITE Network(Springer Nature, 2019-07) Levy, Kenneth D.; Blake, Kathryn; Fletcher-Hoppe, Colette; Franciosi, James; Goto, Diasuke; Hicks, James K.; Holmes, Ann M.; Kanuri, Sri Harsha; Madden, Ebony B.; Musty, Michael D.; Orlando, Lori; Pratt, Victoria M.; Ramos, Michelle; Wu, Ryanne; Ginsburg, Geoffrey S.; Medicine, School of MedicineThe original version of this Article contained an error in the spelling of the author Geoffrey S. Ginsburg, which was incorrectly given as Geoffrey Ginsburg. This has now been corrected in both the PDF and HTML versions of the Article.Item Multi-site investigation of strategies for the clinical implementation of CYP2D6 genotyping to guide drug prescribing(Springer Nature, 2019-10) Cavallari, Larisa H.; Van Driest, Sara L.; Prows, Cynthia A.; Bishop, Jeffrey R.; Limdi, Nita A.; Pratt, Victoria M.; Ramsey, Laura B.; Smith, D. Max; Tuteja, Sony; Duong, Benjamin Q.; Hicks, J. Kevin; Lee, James C.; Obeng, Aniwaa Owusu; Beitelshees, Amber L.; Bell, Gillian C.; Blake, Kathryn; Crona, Daniel J.; Dressler, Lynn; Gregg, Ryan A.; Hines, Lindsay J.; Scott, Stuart A.; Shelton, Richard C.; Weitzel, Kristin Wiisanen; Johnson, Julie A.; Peterson, Josh F.; Empey, Philip E.; Skaar, Todd C.; Medical and Molecular Genetics, School of MedicinePURPOSE: A number of institutions have clinically implemented CYP2D6 genotyping to guide drug prescribing. We compared implementation strategies of early adopters of CYP2D6 testing, barriers faced by both early adopters and institutions in the process of implementing CYP2D6 testing, and approaches taken to overcome these barriers. METHODS: We surveyed eight early adopters of CYP2D6 genotyping and eight institutions in the process of adoption. Data were collected on testing approaches, return of results procedures, applications of genotype results, challenges faced, and lessons learned. RESULTS: Among early adopters, CYP2D6 testing was most commonly ordered to assist with opioid and antidepressant prescribing. Key differences among programs included test ordering and genotyping approaches, result reporting, and clinical decision support. However, all sites tested for copy-number variation and nine common variants, and reported results in the medical record. Most sites provided automatic consultation and had designated personnel to assist with genotype-informed therapy recommendations. Primary challenges were related to stakeholder support, CYP2D6 gene complexity, phenotype assignment, and sustainability. CONCLUSION: There are specific challenges unique to CYP2D6 testing given the complexity of the gene and its relevance to multiple medications. Consensus lessons learned may guide those interested in pursuing similar clinical pharmacogenetic programs.Item Opportunities to implement a sustainable genomic medicine program: lessons learned from the IGNITE Network(Springer Nature, 2019-03) Levy, Kenneth D.; Blake, Kathryn; Fletcher-Hoppe, Colette; Franciosi, James; Goto, Diasuke; Hicks, James K.; Holmes, Ann M.; Kanuri, Sri Harsha; Madden, Ebony B.; Musty, Michael D.; Orlando, Lori; Pratt, Victoria M.; Ramos, Michelle; Wu, Ryanne; Ginsburg, Geoffrey; Medicine, School of MedicinePURPOSE: While there is growing scientific evidence for and significant advances in the use of genomic technologies in medicine, there is a significant lag in the clinical adoption and sustainability of genomic medicine. Here we describe the findings from the National Human Genome Research Institute's (NHGRI) Implementing GeNomics In pracTicE (IGNITE) Network in identifying key constructs, opportunities, and challenges associated with driving sustainability of genomic medicine in clinical practice. METHODS: Network members and affiliates were surveyed to identify key drivers associated with implementing and sustaining a genomic medicine program. Tallied results were used to develop and weigh key constructs/drivers required to support sustainability of genomic medicine programs. RESULTS: The top three driver-stakeholder dyads were (1) genomic training for providers, (2) genomic clinical decision support (CDS) tools embedded in the electronic health record (EHR), and (3) third party reimbursement for genomic testing. CONCLUSION: Priorities may differ depending on healthcare systems when comparing the current state of key drivers versus projected needs for supporting genomic medicine sustainability. Thus we provide gap-filling guidance based on IGNITE members' experiences. Although results are limited to findings from the IGNITE network, their implementation, scientific, and clinical experience may be used as a road map by others considering implementing genomic medicine programs.