- Browse by Author
Browsing by Author "Blackwell, Matthew"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Genetic dissection of triplicated chromosome 21 orthologs yields varying skeletal traits in Down syndrome model mice(The Company of Biologists, 2023) Sloan, Kourtney; Thomas, Jared; Blackwell, Matthew; Voisard, Deanna; Lana-Elola, Eva; Watson-Scales, Sheona; Roper, Daniel L.; Wallace, Joseph M.; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Roper, Randall J.; Biology, School of ScienceDown syndrome (DS) phenotypes result from triplicated genes, but the effects of three copy genes are not well known. A mouse mapping panel genetically dissecting human chromosome 21 (Hsa21) syntenic regions was used to investigate the contributions and interactions of triplicated Hsa21 orthologous genes on mouse chromosome 16 (Mmu16) on skeletal phenotypes. Skeletal structure and mechanical properties were assessed in femurs of male and female Dp9Tyb, Dp2Tyb, Dp3Tyb, Dp4Tyb, Dp5Tyb, Dp6Tyb, Ts1Rhr and Dp1Tyb;Dyrk1a+/+/− mice. Dp1Tyb mice, with the entire Hsa21 homologous region of Mmu16 triplicated, display bone deficits similar to those of humans with DS and served as a baseline for other strains in the panel. Bone phenotypes varied based on triplicated gene content, sex and bone compartment. Three copies of Dyrk1a played a sex-specific, essential role in trabecular deficits and may interact with other genes to influence cortical deficits related to DS. Triplicated genes in Dp9Tyb and Dp2Tyb mice improved some skeletal parameters. As triplicated genes can both improve and worsen bone deficits, it is important to understand the interaction between and molecular mechanisms of skeletal alterations affected by these genes.Item Increased dosage and treatment time of Epigallocatechin-3-gallate (EGCG) negatively affects skeletal parameters in normal mice and Down syndrome mouse models(Public Library of Science, 2022-02-23) Jamal, Raza; LaCombe, Jonathan; Patel, Roshni; Blackwell, Matthew; Thomas, Jared R.; Sloan, Kourtney; Wallace, Joseph M.; Roper, Randall J.; Biology, School of ScienceBone abnormalities affect all individuals with Down syndrome (DS) and are linked to abnormal expression of DYRK1A, a gene found in three copies in people with DS and Ts65Dn DS model mice. Previous work in Ts65Dn male mice demonstrated that both genetic normalization of Dyrk1a and treatment with ~9 mg/kg/day Epigallocatechin-3-gallate (EGCG), the main polyphenol found in green tea and putative DYRK1A inhibitor, improved some skeletal deficits. Because EGCG treatment improved mostly trabecular skeletal deficits, we hypothesized that increasing EGCG treatment dosage and length of administration would positively affect both trabecular and cortical bone in Ts65Dn mice. Treatment of individuals with DS with green tea extract (GTE) containing EGCG also showed some weight loss in individuals with DS, and we hypothesized that weights would be affected in Ts65Dn mice after EGCG treatment. Treatment with ~20 mg/kg/day EGCG for seven weeks showed no improvements in male Ts65Dn trabecular bone and only limited improvements in cortical measures. Comparing skeletal analyses after ~20mg/kg/day EGCG treatment with previously published treatments with ~9, 50, and 200 mg/kg/day EGCG showed that increased dosage and treatment time increased cortical structural deficits leading to weaker appendicular bones in male mice. Weight was not affected by treatment in mice, except for those given a high dose of EGCG by oral gavage. These data indicate that high doses of EGCG, similar to those reported in some treatment studies of DS and other disorders, may impair long bone structure and strength. Skeletal phenotypes should be monitored when high doses of EGCG are administered therapeutically.