ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Björk, Linnea"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Distinct Heterocyclic Moieties Govern the Selectivity of Thiophene-Vinylene-Based Ligands Towards Aβ or Tau Pathology in Alzheime’s Disease
    (Wiley, 2023) Björk, Linnea; Shirani, Hamid; Todarwal, Yogesh; Linares, Mathieu; Vidal, Ruben; Ghetti, Bernardino; Norman, Patrick; Klingstedt, Therése; Nilsson, K. Peter R.; Pathology and Laboratory Medicine, School of Medicine
    Distinct aggregated proteins are correlated with numerous neurodegenerative diseases and the development of ligands that selectively detect these pathological hallmarks is vital. Recently, the synthesis of thiophene-based optical ligands, denoted bi-thiophene-vinyl-benzothiazoles (bTVBTs), that could be utilized for selective assignment of tau pathology in brain tissue with Alzheime's disease (AD) pathology, was reported. Herein, we investigate the ability of these ligands to selectively distinguish tau deposits from aggregated amyloid-β (Aβ), the second AD associated pathological hallmark, when replacing the terminal thiophene moiety with other heterocyclic motifs. The selectivity for tau pathology was reduced when introducing specific heterocyclic motifs, verifying that specific molecular interactions between the ligands and the aggregates are necessary for selective detection of tau deposits. In addition, ligands having certain heterocyclic moieties attached to the central thiophene-vinylene building block displayed selectivity to aggregated Aβ pathology. Our findings provide chemical insights for the development of ligands that can distinguish between aggregated proteinaceous species consisting of different proteins and might also aid in creating novel agents for clinical imaging of tau pathology in AD.
  • Loading...
    Thumbnail Image
    Item
    Proteophenes - Amino Acid Functionalized Thiophene-based Fluorescent Ligands for Visualization of Protein Deposits in Tissue Sections with Alzheimer's Disease Pathology
    (Wiley, 2022) Björk, Linnea; Bäck, Marcus; Lantz, Linda; Ghetti, Bernardino; Vidal, Ruben; Klingstedt, Therése; Nilsson, K. Peter R.; Pathology and Laboratory Medicine, School of Medicine
    Protein deposits composed of specific proteins or peptides are associated with several neurodegenerative diseases and fluorescent ligands able to detect these pathological hallmarks are vital. Here, we report the synthesis of a class of thiophene-based ligands, denoted proteophenes, with different amino acid side-chain functionalities along the conjugated backbone, which display selectivity towards specific disease-associated protein aggregates in tissue sections with Alzheimer's disease (AD) pathology. The selectivity of the ligands towards AD associated pathological hallmarks, such as aggregates of the amyloid-β (Aβ) peptide or tau filamentous inclusions, was highly dependent on the chemical nature of the amino acid functionality, as well as on the location of the functionality along the pentameric thiophene backbone. Finally, the concept of synthesizing donor-acceptor-donor proteophenes with distinct photophysical properties was shown. Our findings provide the structural and functional basis for the development of new thiophene-based ligands that can be utilized for optical assignment of different aggregated proteinaceous species in tissue sections.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University