- Browse by Author
Browsing by Author "Bieberich, Erhard"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma(Elsevier, 2021) James, Briana N.; Oyeniran, Clement; Sturgill, Jamie L.; Newton, Jason; Martin, Rebecca; Bieberich, Erhard; Weigel, Cynthia; Maczis, Melissa A.; Palladino, Elisa N. D.; Lownik, Joseph C.; Trudeau, John B.; Cook-Mills, Joan M.; Wenzel, Sally; Milstein, Sheldon; Spiegel, Sarah; Pediatrics, School of MedicineBackground Nothing is known about the mechanisms by which increased ceramide levels in the lung contribute to allergic responses and asthma severity. Objective We sought to investigate the functional role of ceramide in mouse models of allergic airway disease that recapitulate the cardinal clinical features of human allergic asthma. Methods Allergic airway disease was induced in mice by repeated intranasal administration of house dust mite or the fungal allergen Alternaria alternata. Processes that can be regulated by ceramide and are important for severity of allergic asthma were correlated with ceramide levels measured by mass spectrometry. Results Both allergens induced massive pulmonary apoptosis and also significantly increased reactive oxygen species in the lung. Prevention of increases in lung ceramide levels mitigated allergen-induced apoptosis, reactive oxygen species, and neutrophil infiltration. In contrast, dietary supplementation of the antioxidant α-tocopherol decreased reactive oxygen species but had no significant effects on elevation of ceramide level or apoptosis, indicating that the increases in lung ceramide levels in allergen-challenged mice are not mediated by oxidative stress. Moreover, specific ceramide species were altered in bronchoalveolar lavage fluid from patients with severe asthma compared with in bronchoalveolar lavage fluid from individuals without asthma. Conclusion Our data suggest that elevation of ceramide level after allergen challenge contributes to the apoptosis, reactive oxygen species generation, and neutrophilic infiltrate that characterize the severe asthmatic phenotype. Ceramide might be the trigger of formation of Creola bodies found in the sputum of patients with severe asthma and could be a biomarker to optimize diagnosis and to monitor and improve clinical outcomes in this disease.Item The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1(ASBMB, 2014-07-25) Janes, Kali; Little, Joshua W.; Li, Chao; Bryant, Leesa; Chen, Collin; Chen, Zhoumou; Kamocki, Krzysztof; Doyle, Timothy; Snider, Ashley; Esposito, Emanuela; Cuzzocrea, Salvatore; Bieberich, Erhard; Obedi, Lina; Petrache, Irina; Nicol, Grant; Neumann, William L.; Salvemini, Daniela; Department of Pharmacology and Toxicology, IU School of MedicineThe ceramide-sphingosine 1-phosphate (S1P) rheostat is important in regulating cell fate. Several chemotherapeutic agents, including paclitaxel (Taxol), involve pro-apoptotic ceramide in their anticancer effects. The ceramide-to-S1P pathway is also implicated in the development of pain, raising the intriguing possibility that these sphingolipids may contribute to chemotherapy- induced painful peripheral neuropathy, which can be a critical dose-limiting side effect of many widely used chemotherapeutic agents.We demonstrate that the development of paclitaxel-induced neuropathic pain was associated with ceramide and S1P formation in the spinal dorsal horn that corresponded with the engagement of S1P receptor subtype 1 (S1PR(1))- dependent neuroinflammatory processes as follows: activation of redox-sensitive transcription factors (NFκB) and MAPKs (ERK and p38) as well as enhanced formation of pro-inflammatory and neuroexcitatory cytokines (TNF-α and IL-1β). Intrathecal delivery of the S1PR1 antagonist W146 reduced these neuroinflammatory processes but increased IL-10 and IL-4, potent anti-inflammatory/ neuroprotective cytokines. Additionally, spinal W146 reversed established neuropathic pain. Noteworthy, systemic administration of the S1PR1 modulator FTY720 (Food and Drug Administration- approved for multiple sclerosis) attenuated the activation of these neuroinflammatory processes and abrogated neuropathic pain without altering anticancer properties of paclitaxel and with beneficial effects extended to oxaliplatin. Similar effects were observed with other structurally and chemically unrelated S1PR1 modulators (ponesimod and CYM-5442) and S1PR1 antagonists (NIBR-14/15) but not S1PR1 agonists (SEW2871). Our findings identify for the first time the S1P/S1PR1 axis as a promising molecular and therapeutic target in chemotherapy-induced painful peripheral neuropathy, establish a mechanistic insight into the biomolecular signaling pathways, and provide the rationale for the clinical evaluation of FTY720 in chronic pain patients.