- Browse by Author
Browsing by Author "Bice, Paula"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Circular-SWAT for deep learning based diagnostic classification of Alzheimer's disease: application to metabolome data(Elsevier, 2023) Jo, Taeho; Kim, Junpyo; Bice, Paula; Huynh, Kevin; Wang, Tingting; Arnold, Matthias; Meikle, Peter J.; Giles, Corey; Kaddurah-Daouk, Rima; Saykin, Andrew J.; Nho, Kwangsik; Alzheimer’s Disease Metabolomics Consortium (ADMC); Alzheimer’s Disease Neuroimaging Initiative (ADNI); Radiology and Imaging Sciences, School of MedicineBackground: Deep learning has shown potential in various scientific domains but faces challenges when applied to complex, high-dimensional multi-omics data. Alzheimer's Disease (AD) is a neurodegenerative disorder that lacks targeted therapeutic options. This study introduces the Circular-Sliding Window Association Test (c-SWAT) to improve the classification accuracy in predicting AD using serum-based metabolomics data, specifically lipidomics. Methods: The c-SWAT methodology builds upon the existing Sliding Window Association Test (SWAT) and utilizes a three-step approach: feature correlation analysis, feature selection, and classification. Data from 997 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) served as the basis for model training and validation. Feature correlations were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA), and Convolutional Neural Networks (CNN) were employed for feature selection. Random Forest was used for the final classification. Findings: The application of c-SWAT resulted in a classification accuracy of up to 80.8% and an AUC of 0.808 for distinguishing AD from cognitively normal older adults. This marks a 9.4% improvement in accuracy and a 0.169 increase in AUC compared to methods without c-SWAT. These results were statistically significant, with a p-value of 1.04 × 10ˆ-4. The approach also identified key lipids associated with AD, such as Cer(d16:1/22:0) and PI(37:6). Interpretation: Our results indicate that c-SWAT is effective in improving classification accuracy and in identifying potential lipid biomarkers for AD. These identified lipids offer new avenues for understanding AD and warrant further investigation.Item Deep learning-based identification of genetic variants: application to Alzheimer’s disease classification(Oxford University Press, 2022) Jo, Taeho; Nho, Kwangsik; Bice, Paula; Saykin, Andrew J.; Alzheimer’s Disease Neuroimaging InitiativeDeep learning is a promising tool that uses nonlinear transformations to extract features from high-dimensional data. Deep learning is challenging in genome-wide association studies (GWAS) with high-dimensional genomic data. Here we propose a novel three-step approach (SWAT-CNN) for identification of genetic variants using deep learning to identify phenotype-related single nucleotide polymorphisms (SNPs) that can be applied to develop accurate disease classification models. In the first step, we divided the whole genome into nonoverlapping fragments of an optimal size and then ran convolutional neural network (CNN) on each fragment to select phenotype-associated fragments. In the second step, using a Sliding Window Association Test (SWAT), we ran CNN on the selected fragments to calculate phenotype influence scores (PIS) and identify phenotype-associated SNPs based on PIS. In the third step, we ran CNN on all identified SNPs to develop a classification model. We tested our approach using GWAS data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) including (N = 981; cognitively normal older adults (CN) = 650 and AD = 331). Our approach identified the well-known APOE region as the most significant genetic locus for AD. Our classification model achieved an area under the curve (AUC) of 0.82, which was compatible with traditional machine learning approaches, random forest and XGBoost. SWAT-CNN, a novel deep learning-based genome-wide approach, identified AD-associated SNPs and a classification model for AD and may hold promise for a range of biomedical applications.Item LD‐informed deep learning for Alzheimer's gene loci detection using WGS data(Wiley, 2025-01-16) Jo, Taeho; Bice, Paula; Nho, Kwangsik; Saykin, Andrew J.; Alzheimer’s Disease Sequencing Project; Radiology and Imaging Sciences, School of MedicineIntroduction: The exponential growth of genomic datasets necessitates advanced analytical tools to effectively identify genetic loci from large-scale high throughput sequencing data. This study presents Deep-Block, a multi-stage deep learning framework that incorporates biological knowledge into its AI architecture to identify genetic regions as significantly associated with Alzheimer's disease (AD). The framework employs a three-stage approach: (1) genome segmentation based on linkage disequilibrium (LD) patterns, (2) selection of relevant LD blocks using sparse attention mechanisms, and (3) application of TabNet and Random Forest algorithms to quantify single nucleotide polymorphism (SNP) feature importance, thereby identifying genetic factors contributing to AD risk. Methods: The Deep-Block was applied to a large-scale whole genome sequencing (WGS) dataset from the Alzheimer's Disease Sequencing Project (ADSP), comprising 7416 non-Hispanic white (NHW) participants (3150 cognitively normal older adults (CN), 4266 AD). Results: 30,218 LD blocks were identified and then ranked based on their relevance with Alzheimer's disease. Subsequently, the Deep-Block identified novel SNPs within the top 1500 LD blocks and confirmed previously known variants, including APOE rs429358 and rs769449. Expression Quantitative Trait Loci (eQTL) analysis across 13 brain regions provided functional evidence for the identified variants. The results were cross-validated against established AD-associated loci from the European Alzheimer's and Dementia Biobank (EADB) and the GWAS catalog. Discussion: The Deep-Block framework effectively processes large-scale high throughput sequencing data while preserving SNP interactions during dimensionality reduction, minimizing bias and information loss. The framework's findings are supported by tissue-specific eQTL evidence across brain regions, indicating the functional relevance of the identified variants. Additionally, the Deep-Block approach has identified both known and novel genetic variants, enhancing our understanding of the genetic architecture and demonstrating its potential for application in large-scale sequencing studies. Highlights: Growing genomic datasets require advanced tools to identify genetic loci in sequencing. Deep-Block, a novel AI framework, was used to process large-scale ADSP WGS data. Deep-Block identified both known and novel AD-associated genetic loci.rs429358 (APOE) was key; rs11556505 (TOMM40), rs34342646 (NECTIN2) were significant. The AI framework uses biological knowledge to enhance detection of Alzheimer's loci.Item Linkage Disequilibrium-Informed Deep Learning Framework to Identify Genetic Loci for Alzheimer’s Disease Using Whole Genome Sequencing Data(medRxiv, 2024-09-22) Jo, Taeho; Bice, Paula; Nho, Kwangsik; Saykin, Andrew J.; Alzheimer’s Disease Sequencing Project; Radiology and Imaging Sciences, School of MedicineThe exponential growth of genomic datasets necessitates advanced analytical tools to effectively identify genetic loci from large-scale high throughput sequencing data. This study presents Deep-Block, a multi-stage deep learning framework that incorporates biological knowledge into its AI architecture to identify genetic regions as significantly associated with Alzheimer's disease (AD). The framework employs a three-stage approach: (1) genome segmentation based on linkage disequilibrium (LD) patterns, (2) selection of relevant LD blocks using sparse attention mechanisms, and (3) application of TabNet and Random Forest algorithms to quantify single nucleotide polymorphism (SNP) feature importance, thereby identifying genetic factors contributing to AD risk. The Deep-Block was applied to a large-scale whole genome sequencing (WGS) dataset from the Alzheimer's Disease Sequencing Project (ADSP), comprising 7,416 non-Hispanic white participants (3,150 cognitively normal older adults (CN), 4,266 AD). First, 30,218 LD blocks were identified and then ranked based on their relevance with Alzheimer's disease. Subsequently, the Deep-Block identified novel SNPs within the top 1,500 LD blocks and confirmed previously known variants, including APOE rs429358 and rs769449. The results were cross-validated against established AD-associated loci from the European Alzheimer's and Dementia Biobank (EADB) and the GWAS catalog. The Deep-Block framework effectively processes large-scale high throughput sequencing data while preserving interactions between SNPs in performing the dimensionality reduction, which can potentially introduce bias or lead to information loss. The Deep-Block approach identified both known and novel genetic variation, enhancing our understanding of the genetic architecture of and demonstrating the framework's potential for application in large-scale sequencing studies.