ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bhatnagar, Surbhi"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Genetic Causes of Cardiomyopathy in Children: First Results From the Pediatric Cardiomyopathy Genes Study
    (American Heart Association, 2021-05-04) Ware, Stephanie M.; Wilkinson, James D.; Tariq, Muhammad; Schubert, Jeffrey A.; Sridhar, Arthi; Colan, Steven D.; Shi, Ling; Canter, Charles E.; Hsu, Daphne T.; Webber, Steven A.; Dodd, Debra A.; Everitt, Melanie D.; Kantor, Paul F.; Addonizio, Linda J.; Jefferies, John L.; Rossano, Joseph W.; Pahl, Elfriede; Rusconi, Paolo; Chung, Wendy K.; Lee, Teresa; Towbin, Jeffrey A.; Lal, Ashwin K.; Bhatnagar, Surbhi; Aronow, Bruce; Dexheimer, Phillip J.; Martin, Lisa J.; Miller, Erin M.; Sleeper, Lynn A.; Razoky, Hiedy; Czachor, Jason; Lipshultz, Steven E.; Pediatrics, School of Medicine
    Pediatric cardiomyopathy is a genetically heterogeneous disease with substantial morbidity and mortality. Current guidelines recommend genetic testing in children with hypertrophic, dilated, or restrictive cardiomyopathy, but practice variations exist. Robust data on clinical testing practices and diagnostic yield in children are lacking. This study aimed to identify the genetic causes of cardiomyopathy in children and to investigate clinical genetic testing practices. Methods and Results Children with familial or idiopathic cardiomyopathy were enrolled from 14 institutions in North America. Probands underwent exome sequencing. Rare sequence variants in 37 known cardiomyopathy genes were assessed for pathogenicity using consensus clinical interpretation guidelines. Of the 152 enrolled probands, 41% had a family history of cardiomyopathy. Of 81 (53%) who had undergone clinical genetic testing for cardiomyopathy before enrollment, 39 (48%) had a positive result. Genetic testing rates varied from 0% to 97% between sites. A positive family history and hypertrophic cardiomyopathy subtype were associated with increased likelihood of genetic testing (P=0.005 and P=0.03, respectively). A molecular cause was identified in an additional 21% of the 63 children who did not undergo clinical testing, with positive results identified in both familial and idiopathic cases and across all phenotypic subtypes. Conclusions A definitive molecular genetic diagnosis can be made in a substantial proportion of children for whom the cause and heritable nature of their cardiomyopathy was previously unknown. Practice variations in genetic testing are great and should be reduced. Improvements can be made in comprehensive cardiac screening and predictive genetic testing in first-degree relatives. Overall, our results support use of routine genetic testing in cases of both familial and idiopathic cardiomyopathy.
  • Loading...
    Thumbnail Image
    Item
    Genomics of pediatric cardiomyopathy
    (Springer Nature, 2025) Lee, Teresa M.; Ware, Stephanie M.; Kamsheh, Alicia M.; Bhatnagar, Surbhi; Absi, Mohammed; Miller, Elyse; Purevjav, Enkhsaikhan; Ryan, Kaitlin A.; Towbin, Jeffrey A.; Lipshultz, Steven E.; Pediatrics, School of Medicine
    Cardiomyopathy in children is a leading cause of heart failure and cardiac transplantation. Disease-associated genetic variants play a significant role in the development of the different subtypes of disease. Genetic testing is increasingly being recognized as the standard of care for diagnosing this heterogeneous group of disorders, guiding management, providing prognostic information, and facilitating family-based risk stratification. The increase in clinical and research genetic testing within the field has led to new insights into this group of disorders. Mutations in genes encoding sarcomere, cytoskeletal, Z-disk, and sarcolemma proteins appear to play a major role in causing the overlapping clinical phenotypes called cardioskeletal myopathies through "final common pathway" links. For myocarditis, the high frequency of infectious exposures and wide spectrum of presentation suggest that genetic factors mediate the development and course of the disease, including genetic risk alleles, an association with cardiomyopathy, and undiagnosed arrhythmogenic cardiomyopathy. Finally, while we have made strides in elucidating the genetic architecture of pediatric cardiomyopathy, understanding the clinical implications of variants of uncertain significance remains a major issue. The need for continued genetic innovation in this field remains great, particularly as a basis to drive forward targeted precision medicine and gene therapy efforts. IMPACT: Cardiomyopathy and skeletal myopathy can occur in the same patient secondary to gene mutations that encode for sarcomeric or cytoskeletal proteins, which are expressed in both muscle groups, highlighting that there are common final pathways of disease. The heterogeneous presentation of myocarditis is likely secondary to a complex interaction of multiple environmental and genetic factors, suggesting a utility to genetic testing in pediatric patients with myocarditis, particularly those in higher risk groups. Given the high prevalence of variants of uncertain significance in genetic testing, better bioinformatic tools and pipelines are needed to resolve their clinical meaning.
  • Loading...
    Thumbnail Image
    Item
    The genetic architecture of pediatric cardiomyopathy
    (Elsevier, 2022) Ware, Stephanie M.; Bhatnagar, Surbhi; Dexheimer, Phillip J.; Wilkinson, James D.; Sridhar, Arthi; Fan, Xiao; Shen, Yufeng; Tariq, Muhammad; Schubert, Jeffrey A.; Colan, Steven D.; Shi, Ling; Canter, Charles E.; Hsu, Daphne T.; Bansal, Neha; Webber, Steven A.; Everitt, Melanie D.; Kantor, Paul F.; Rossano, Joseph W.; Pahl, Elfriede; Rusconi, Paolo; Lee, Teresa M.; Towbin, Jeffrey A.; Lal, Ashwin K.; Chung, Wendy K.; Miller, Erin M.; Aronow, Bruce; Martin, Lisa J.; Lipshultz, Steven E.; Pediatric Cardiomyopathy Registry Study Group; Pediatrics, School of Medicine
    To understand the genetic contribution to primary pediatric cardiomyopathy, we performed exome sequencing in a large cohort of 528 children with cardiomyopathy. Using clinical interpretation guidelines and targeting genes implicated in cardiomyopathy, we identified a genetic cause in 32% of affected individuals. Cardiomyopathy sub-phenotypes differed by ancestry, age at diagnosis, and family history. Infants < 1 year were less likely to have a molecular diagnosis (p < 0.001). Using a discovery set of 1,703 candidate genes and informatic tools, we identified rare and damaging variants in 56% of affected individuals. We see an excess burden of damaging variants in affected individuals as compared to two independent control sets, 1000 Genomes Project (p < 0.001) and SPARK parental controls (p < 1 × 10-16). Cardiomyopathy variant burden remained enriched when stratified by ancestry, variant type, and sub-phenotype, emphasizing the importance of understanding the contribution of these factors to genetic architecture. Enrichment in this discovery candidate gene set suggests multigenic mechanisms underlie sub-phenotype-specific causes and presentations of cardiomyopathy. These results identify important information about the genetic architecture of pediatric cardiomyopathy and support recommendations for clinical genetic testing in children while illustrating differences in genetic architecture by age, ancestry, and sub-phenotype and providing rationale for larger studies to investigate multigenic contributions.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University