- Browse by Author
Browsing by Author "Berrens, Zachary"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Acute Kidney Injury Interacts With Coma, Acidosis, and Impaired Perfusion to Significantly Increase Risk of Death in Children With Severe Malaria(Oxford University Press, 2022) Namazzi, Ruth; Opoka, Robert; Datta, Dibyadyuti; Bangirana, Paul; Batte, Anthony; Berrens, Zachary; Goings, Michael J.; Schwaderer, Andrew L.; Conroy, Andrea L.; John, Chandy C.; Pediatrics, School of MedicineBackground: Mortality in severe malaria remains high in children treated with intravenous artesunate. Acute kidney injury (AKI) is a common complication of severe malaria, but the interactions between AKI and other complications on the risk of mortality in severe malaria are not well characterized. Methods: Between 2014 and 2017, 600 children aged 6-48 months to 4 years hospitalized with severe malaria were enrolled in a prospective clinical cohort study evaluating clinical predictors of mortality in children with severe malaria. Results: The mean age of children in this cohort was 2.1 years (standard deviation, 0.9 years) and 338 children (56.3%) were male. Mortality was 7.3%, and 52.3% of deaths occurred within 12 hours of admission. Coma, acidosis, impaired perfusion, AKI, elevated blood urea nitrogen (BUN), and hyperkalemia were associated with increased mortality (all P < .001). AKI interacted with each risk factor to increase mortality (P < .001 for interaction). Children with clinical indications for dialysis (14.4% of all children) had an increased risk of death compared with those with no indications for dialysis (odds ratio, 6.56; 95% confidence interval, 3.41-12.59). Conclusions: AKI interacts with coma, acidosis, or impaired perfusion to significantly increase the risk of death in severe malaria. Among children with AKI, those who have hyperkalemia or elevated BUN have a higher risk of death. A better understanding of the causes of these complications of severe malaria, and development and implementation of measures to prevent and treat them, such as dialysis, are needed to reduce mortality in severe malaria.Item Acute kidney injury, persistent kidney disease, and post-discharge morbidity and mortality in severe malaria in children: A prospective cohort study(Elsevier, 2022-02-12) Namazzi, Ruth; Batte, Anthony; Opoka, Robert O.; Bangirana, Paul; Schwaderer, Andrew L.; Berrens, Zachary; Datta, Dibyadyuti; Goings, Michael; Ssenkusu, John M.; Goldstein, Stuart L.; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineBackground: Globally, 85% of acute kidney injury (AKI) cases occur in low-and-middle-income countries. There is limited information on persistent kidney disease (acute kidney disease [AKD]) following severe malaria-associated AKI. Methods: Between March 28, 2014, and April 18, 2017, 598 children with severe malaria and 118 community children were enrolled in a two-site prospective cohort study in Uganda and followed up for 12 months. The Kidney Disease: Improving Global Outcomes (KDIGO) criteria were used to define AKI (primary exposure) and AKD at 1-month follow-up (primary outcome). Plasma neutrophil gelatinase-associated lipocalin (NGAL) was assessed as a structural biomarker of AKI. Findings: The prevalence of AKI was 45·3% with 21·5% of children having unresolved AKI at 24 h. AKI was more common in Eastern Uganda. In-hospital mortality increased across AKI stages from 1·8% in children without AKI to 26·5% with Stage 3 AKI (p < 0·0001). Children with a high-risk plasma NGAL test were more likely to have unresolved AKI (OR, 7·00 95% CI 4·16 to 11·76) and die in hospital (OR, 6·02 95% CI 2·83 to 12·81). AKD prevalence was 15·6% at 1-month follow-up with most AKD occurring in Eastern Uganda. Risk factors for AKD included severe/unresolved AKI, blackwater fever, and a high-risk NGAL test (adjusted p < 0·05). Paracetamol use during hospitalization was associated with reduced AKD (p < 0·0001). Survivors with AKD post-AKI had higher post-discharge mortality (17·5%) compared with children without AKD (3·7%). Interpretation: Children with severe malaria-associated AKI are at risk of AKD and post-discharge mortality.Item Diabetic Ketoacidosis With Refractory Hypokalemia Leading to Cardiac Arrest(Cureus, 2022-03-24) Grout, Sarah; Maue, Danielle; Berrens, Zachary; Swinger, Nathan; Malin, Stefan; Pediatrics, School of MedicineDiabetic ketoacidosis (DKA) is known to cause total body potassium depletion, but during initial presentation, very few patients are hypokalemic, and even fewer patients experience clinical effects. As the correction of acidosis and insulin drive potassium intracellularly, measured serum potassium levels decrease and require repletion. This phenomenon is well described, and severe hypokalemia necessitates delaying insulin therapy. Less well described is the kaliuretic nature of treatments of cerebral edema. We present a case of an adolescent male with new-onset type 2 diabetes who presented in DKA with signs of cerebral edema, hyperosmolarity, and hypokalemia. As insulin and cerebral edema therapy were initiated, his hypokalemia worsened despite significant IV repletion, eventually leading to ventricular tachycardia and cardiac arrest. Over the following 36 hours, the patient received >590 milliequivalents (mEq) of potassium. He was discharged home 12 days after admission without sequelae of his cardiac arrest.Item Malaria-Associated Acute Kidney Injury in African Children: Prevalence, Pathophysiology, Impact, and Management Challenges(Dovepress, 2021-07-08) Batte, Anthony; Berrens, Zachary; Murphy, Kristin; Mufumba, Ivan; Sarangam, Maithri L.; Hawkes, Michael T.; Conroy, Andrea L.; Pediatrics, School of MedicineAcute kidney injury (AKI) is emerging as a complication of increasing clinical importance associated with substantial morbidity and mortality in African children with severe malaria. Using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria to define AKI, an estimated 24-59% of African children with severe malaria have AKI with most AKI community-acquired. AKI is a risk factor for mortality in pediatric severe malaria with a stepwise increase in mortality across AKI stages. AKI is also a risk factor for post-discharge mortality and is associated with increased long-term risk of neurocognitive impairment and behavioral problems in survivors. Following injury, the kidney undergoes a process of recovery and repair. AKI is an established risk factor for chronic kidney disease and hypertension in survivors and is associated with an increased risk of chronic kidney disease in severe malaria survivors. The magnitude of the risk and contribution of malaria-associated AKI to chronic kidney disease in malaria-endemic areas remains undetermined. Pathways associated with AKI pathogenesis in the context of pediatric severe malaria are not well understood, but there is emerging evidence that immune activation, endothelial dysfunction, and hemolysis-mediated oxidative stress all directly contribute to kidney injury. In this review, we outline the KDIGO bundle of care and highlight how this could be applied in the context of severe malaria to improve kidney perfusion, reduce AKI progression, and improve survival. With increased recognition that AKI in severe malaria is associated with substantial post-discharge morbidity and long-term risk of chronic kidney disease, there is a need to increase AKI recognition through enhanced access to creatinine-based and next-generation biomarker diagnostics. Long-term studies to assess severe malaria-associated AKI's impact on long-term health in malaria-endemic areas are urgently needed.Item Neutrophil gelatinase-associated lipocalin is elevated in children with acute kidney injury and sickle cell anemia, and predicts mortality(Elsevier, 2022) Batte, Anthony; Menon, Sahit; Ssenkusu, John M.; Kiguli, Sarah; Kalyesubula, Robert; Lubega, Joseph; Berrens, Zachary; Mutebi, Edrisa Ibrahim; Ogwang, Rodney; Opoka, Robert O.; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineUrine neutrophil gelatinase-associated lipocalin (NGAL) is a biomarker of acute kidney injury that has been adapted to a urine dipstick test. However, there is limited data on its use in low- and-middle-income countries where diagnosis of acute kidney injury remains a challenge. To study this, we prospectively enrolled 250 children with sickle cell anemia aged two to 18 years encompassing 185 children hospitalized with a vaso-occlusive pain crisis and a reference group of 65 children attending the sickle cell clinic for routine care follow up. Kidney injury was defined using serial creatinine measures and a modified-Kidney Disease Improving Global Outcome definition for sickle cell anemia. Urine NGAL was measured using the NGAL dipstick and a laboratory reference. The mean age of children enrolled was 8.9 years and 42.8% were female. Among hospitalized children, 36.2% had kidney injury and 3.2% died. Measured urine NGAL levels by the dipstick were strongly correlated with the standard enzyme-linked immunosorbent assay for urine NGAL (hospitalized children, 0.71; routine care reference, 0.88). NGAL levels were elevated in kidney injury and significantly increased across injury stages. Hospitalized children with a high-risk dipstick test (300ng/mL and more) had a 2.47-fold relative risk of kidney injury (95% confidence interval 1.68 to 3.61) and 7.28 increased risk of death (95% confidence interval 1.10 to 26.81) adjusting for age and sex. Thus, urine NGAL levels were found to be significantly elevated in children with sickle cell anemia and acute kidney injury and may predict mortality.