- Browse by Author
Browsing by Author "Berman, Daniel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Computed tomography angiography-derived extracellular volume fraction predicts early recovery of left ventricular systolic function after transcatheter aortic valve replacement(Oxford University Press, 2021) Han, Donghee; Tamarappoo, Balaji; Klein, Eyal; Tyler, Jeffrey; Chakravarty, Tarun; Otaki, Yuka; Miller, Robert; Eisenberg, Evann; Park, Rebekah; Singh, Siddharth; Shiota, Takahiro; Siegel, Robert; Stegic, Jasminka; Salseth, Tracy; Cheng, Wen; Dey, Damini; Thomson, Louise; Berman, Daniel; Makkar, Raj; Friedman, John; Radiation Oncology, School of MedicineAims: Recovery of left ventricular ejection fraction (LVEF) after aortic valve replacement has prognostic importance in patients with aortic stenosis (AS). The mechanism by which myocardial fibrosis impacts LVEF recovery in AS is not well characterized. We sought to evaluate the predictive value of extracellular volume fraction (ECV) quantified by cardiac CT angiography (CTA) for LVEF recovery in patients with AS after transcatheter aortic valve replacement (TAVR). Methods and results: In 109 pre-TAVR patients with LVEF <50% at baseline echocardiography, CTA-derived ECV was calculated as the ratio of change in CT attenuation of the myocardium and the left ventricular (LV) blood pool before and after contrast administration. Early LVEF recovery was defined as an absolute increase of ≥10% in LVEF measured by post-TAVR follow-up echocardiography within 6 months of the procedure. Early LVEF recovery was observed in 39 (36%) patients. The absolute increase in LVEF was 17.6 ± 8.8% in the LVEF recovery group and 0.9 ± 5.9% in the no LVEF recovery group (P < 0.001). ECV was significantly lower in patients with LVEF recovery compared with those without LVEF recovery (29.4 ± 6.1% vs. 33.2 ± 7.7%, respectively, P = 0.009). In multivariable analysis, mean pressure gradient across the aortic valve [odds ratio (OR): 1.07, 95% confidence interval (CI): 1.03-1.11, P: 0.001], LV end-diastolic volume (OR: 0.99, 95% CI: 0.98-0.99, P: 0.035), and ECV (OR: 0.92, 95% CI: 0.86-0.99, P: 0.018) were independent predictors of early LVEF recovery. Conclusion: Increased myocardial ECV on CTA is associated with impaired LVEF recovery post-TAVR in severe AS patients with impaired LV systolic function.Item Reduced myocardial perfusion is common among subjects with ischemia and no obstructive coronary artery disease and heart failure with preserved ejection fraction: a report from the WISE-CVD continuation study(OAE, 2022) Aldiwani, Haider; Nelson, Michael D.; Sharif, Behzad; Wei, Janet; Samuel, T. Jake; Suppogu, Nissi; Quesada, Odayme; Cook-Wiens, Galen; Gill, Edward; Szczepaniak, Lidia S.; Thomson, Louise E. J.; Tamarappoo, Balaji; Asif, Anum; Shufelt, Chrisandra; Berman, Daniel; Merz, C. Noel Bairey; Medicine, School of MedicineAim: Women with evidence of ischemia and no obstructive coronary artery disease (INOCA) have an increased risk of major adverse cardiac events, including heart failure with preserved ejection fraction (HFpEF). To investigate potential links between INOCA and HFpEF, we examined pathophysiological findings present in both INOCA and HFpEF. Methods: We performed adenosine stress cardiac magnetic resonance imaging (CMRI) in 56 participants, including 35 women with suspected INOCA, 13 women with HFpEF, and 8 reference control women. Myocardial perfusion imaging was performed at rest and with vasodilator stress with intravenous adenosine. Myocardial perfusion reserve index was quantified as the ratio of the upslope of increase in myocardial contrast at stress vs. rest. All CMRI measures were quantified using CVI42 software (Circle Cardiovascular Imaging Inc). Statistical analysis was performed using linear regression models, Fisher's exact tests, ANOVA, or Kruskal-Wallis tests. Results: Age (P = 0.007), Body surface area (0.05) were higher in the HFpEF group. Left ventricular ejection fraction (P = 0.02) was lower among the INOCA and HFpEF groups than reference controls after age adjustment. In addition, there was a graded reduction in myocardial perfusion reserve index in HFpEF vs. INOCA vs. reference controls (1.5 ± 0.3, 1.8 ± 0.3, 1.9 ± 0.3, P = 0.02), which was attenuated with age-adjustment. Conclusion: Reduced myocardial perfusion reserve appears to be a common pathophysiologic feature in INOCA and HFpEF patients.