- Browse by Author
Browsing by Author "Bergmann, Sophia"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Attentional Disengagement and the Locus Coeruleus – Norepinephrine System in Children With Autism Spectrum Disorder(Frontiers Media, 2021-08-31) Keehn, Brandon; Kadlaskar, Girija; Bergmann, Sophia; McNally Keehn, Rebecca; Francis, Alexander; Pediatrics, School of MedicineBackground: Differences in non-social attentional functions have been identified as among the earliest features that distinguish infants later diagnosed with autism spectrum disorder (ASD), and may contribute to the emergence of core ASD symptoms. Specifically, slowed attentional disengagement and difficulty reorienting attention have been found across the lifespan in those at risk for, or diagnosed with, ASD. Additionally, the locus coeruleus-norepinephrine (LC-NE) system, which plays a critical role in arousal regulation and selective attention, has been shown to function atypically in ASD. While activity of the LC-NE system is associated with attentional disengagement and reorienting in typically developing (TD) individuals, it has not been determined whether atypical LC-NE activity relates to attentional disengagement impairments observed in ASD. Objective: To examine the relationship between resting pupil diameter (an indirect measure of tonic LC-NE activation) and attentional disengagement in children with ASD. Methods: Participants were 21 school-aged children with ASD and 20 age- and IQ-matched TD children. The study consisted of three separate experiments: a resting eye-tracking task and visual and auditory gap-overlap paradigms. For the resting eye-tracking task, pupil diameter was monitored while participants fixated a central crosshair. In the gap-overlap paradigms, participants were instructed to fixate on a central stimulus and then move their eyes to peripherally presented visual or auditory targets. Saccadic reaction times (SRT), percentage of no-shift trials, and disengagement efficiency were measured. Results: Children with ASD had significantly larger resting pupil size compared to their TD peers. The groups did not differ for overall SRT, nor were there differences in SRT for overlap and gap conditions between groups. However, the ASD group did evidence impairments in disengagement (larger step/gap effects, higher percentage of no-shift trials, and reduced disengagement efficiency) compared to their TD peers. Correlational analyses showed that slower, less efficient disengagement was associated with increased pupil diameter. Conclusion: Consistent with prior reports, children with ASD show significantly larger resting pupil diameter, indicative of atypically elevated tonic LC-NE activity. Associations between pupil size and measures of attentional disengagement suggest that atypically increased tonic activation of the LC-NE system may be associated with poorer attentional disengagement in children with ASD.Item Electrophysiological Measures of Tactile and Auditory Processing in Children With Autism Spectrum Disorder(Frontiers Media, 2021-12-23) Kadlaskar, Girija; Bergmann, Sophia; McNally Keehn, Rebecca; Seidl, Amanda; Keehn, Brandon; Pediatrics, School of MedicineBehavioral differences in responding to tactile and auditory stimuli are widely reported in individuals with autism spectrum disorder (ASD). However, the neural mechanisms underlying distinct tactile and auditory reactivity patterns in ASD remain unclear with theories implicating differences in both perceptual and attentional processes. The current study sought to investigate (1) the neural indices of early perceptual and later attentional factors underlying tactile and auditory processing in children with and without ASD, and (2) the relationship between neural indices of tactile and auditory processing and ASD symptomatology. Participants included 14, 6-12-year-olds with ASD and 14 age- and non-verbal IQ matched typically developing (TD) children. Children participated in an event-related potential (ERP) oddball paradigm during which they watched a silent video while being presented with tactile and auditory stimuli (i.e., 80% standard speech sound/a/; 10% oddball speech sound/i/; 10% novel vibrotactile stimuli on the fingertip with standard speech sound/a/). Children's early and later ERP responses to tactile (P1 and N2) and auditory stimuli (P1, P3a, and P3b) were examined. Non-parametric analyses showed that children with ASD displayed differences in early perceptual processing of auditory (i.e., lower amplitudes at central region of interest), but not tactile, stimuli. Analysis of later attentional components did not show differences in response to tactile and auditory stimuli in the ASD and TD groups. Together, these results suggest that differences in auditory responsivity patterns could be related to perceptual factors in children with ASD. However, despite differences in caregiver-reported sensory measures, children with ASD did not differ in their neural reactivity to infrequent touch-speech stimuli compared to TD children. Nevertheless, correlational analyses confirmed that inter-individual differences in neural responsivity to tactile and auditory stimuli were related to social skills in all children. Finally, we discuss how the paradigm and stimulus type used in the current study may have impacted our results. These findings have implications for everyday life, where individual differences in responding to tactile and auditory stimuli may impact social functioning.Item Equivalent Behavioral Facilitation to Tactile Cues in Children with Autism Spectrum Disorder(MDPI, 2021-05-13) Kadlaskar, Girija; Bergmann, Sophia; McNally Keehn, Rebecca; Seidl, Amanda; Keehn, Brandon; Pediatrics, School of MedicineThe alerting network, a subcomponent of attention, enables humans to respond to novel information. Children with ASD have shown equivalent alerting in response to visual and/or auditory stimuli compared to typically developing (TD) children. However, it is unclear whether children with ASD and TD show equivalent alerting to tactile stimuli. We examined (1) whether tactile cues affect accuracy and reaction times in children with ASD and TD, (2) whether the duration between touch-cues and auditory targets impacts performance, and (3) whether behavioral responses in the tactile cueing task are associated with ASD symptomatology. Six- to 12-year-olds with ASD and TD participated in a tactile-cueing task and were instructed to respond with a button press to a target sound /a/. Tactile cues were presented at 200, 400, and 800 ms (25% each) prior to the auditory target. The remaining trials (25%) were presented without tactile cues. Findings suggested that both groups showed equivalent alerting responses to tactile cues. Additionally, all children were faster to respond to auditory targets at longer cue-target intervals. Finally, there was an association between rate of facilitation and RRB scores in all children, suggesting that patterns of responding to transient phasic cues may be related to ASD symptomatology.