- Browse by Author
Browsing by Author "Bentley-Ford, Melissa R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A transgenic Alx4-CreER mouse to analyze anterior limb and nephric duct development(Wiley, 2022) Rockwell, Devan M.; O’Connor, Amber K.; Bentley-Ford, Melissa R.; Haycraft, Courtney J.; Croyle, Mandy J.; Brewer, Kathryn M.; Berbari, Nicolas F.; Kesterson, Robert A.; Yoder, Bradley K.; Biology, School of ScienceBackground: Genetic tools to study gene function and the fate of cells in the anterior limb bud are very limited. Results: We describe a transgenic mouse line expressing CreERT2 from the Aristaless-like 4 (Alx4) promoter that induces recombination in the anterior limb. Cre induction at embryonic day 8.5 revealed that Alx4-CreERT2 labeled cells using the mTmG Cre reporter contributed to anterior digits I to III as well as the radius of the forelimb. Cre activity is expanded further along the AP axis in the hindlimb than in the forelimb resulting in some Cre reporter cells contributing to digit IV. Induction at later time points labeled cells that become progressively restricted to more anterior digits and proximal structures. Comparison of Cre expression from the Alx4 promoter transgene with endogenous Alx4 expression reveals Cre expression is slightly expanded posteriorly relative to the endogenous Alx4 expression. Using Alx4-CreERT2 to induce loss of intraflagellar transport 88 (Ift88), a gene required for ciliogenesis, hedgehog signaling, and limb patterning, did not cause overt skeletal malformations. However, the efficiency of deletion, time needed for Ift88 protein turnover, and for cilia to regress may hinder using this approach to analyze cilia in the limb. Alx4-CreERT2 is also active in the mesonephros and nephric duct that contribute to the collecting tubules and ducts of the adult nephron. Embryonic activation of the Alx4-CreERT2 in the Ift88 conditional line results in cyst formation in the collecting tubules/ducts. Conclusion: Overall, the Alx4-CreERT2 line will be a new tool to assess cell fates and analyze gene function in the anterior limb, mesonephros, and nephric duct.Item A mouse model of BBS identifies developmental and homeostatic effects of BBS5 mutation and identifies novel pituitary abnormalities(Oxford University Press, 2021) Bentley-Ford, Melissa R.; Engle, Staci E.; Clearman, Kelsey R.; Haycraft, Courtney J.; Andersen, Reagan S.; Croyle, Mandy J.; Rains, Addison B.; Berbari, Nicolas F.; Yoder, Bradley K.; Biology, School of SciencePrimary cilia are critical sensory and signaling compartments present on most mammalian cell types. These specialized structures require a unique signaling protein composition relative to the rest of the cell to carry out their functions. Defects in ciliary structure and signaling result in a broad group of disorders collectively known as ciliopathies. One ciliopathy, Bardet-Biedl syndrome (BBS; OMIM 209900), presents with diverse clinical features, many of which are attributed to defects in ciliary signaling during both embryonic development and postnatal life. For example, patients exhibit obesity, polydactyly, hypogonadism, developmental delay and skeletal abnormalities along with sensory and cognitive deficits, but for many of these phenotypes it is uncertain, which are developmental in origin. A subset of BBS proteins assembles into the core BBSome complex, which is responsible for mediating transport of membrane proteins into and out of the cilium, establishing it as a sensory and signaling hub. Here, we describe two new mouse models for BBS resulting from a targeted LacZ gene trap allele (Bbs5-/-) that is a predicted congenital null mutation and conditional (Bbs5flox/flox) allele of Bbs5. Bbs5-/- mice develop a complex phenotype consisting of increased pre-weaning lethality craniofacial and skeletal defects, ventriculomegaly, infertility and pituitary anomalies. Utilizing the conditional allele, we show that the male fertility defects, ventriculomegaly and pituitary abnormalities are only present when Bbs5 is disrupted prior to postnatal day 7, indicating a developmental origin. In contrast, mutation of Bbs5 results in obesity, independent of the age of Bbs5 loss.