- Browse by Author
Browsing by Author "Beezhold, Donald H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Aspergillus versicolor Inhalation Triggers Neuroimmune, Glial, and Neuropeptide Transcriptional Changes(Sage, 2021) Ladd, Thatcher B.; Johnson, James A., Jr.; Mumaw, Christen L.; Greve, Hendrik J.; Xuei, Xiaoling; Simpson, Ed; Barnes, Mark A.; Green, Brett J.; Croston, Tara L.; Ahmed, Chandrama; Lemons, Angela; Beezhold, Donald H.; Block, Michelle L.; Medical and Molecular Genetics, School of MedicineIncreasing evidence associates indoor fungal exposure with deleterious central nervous system (CNS) health, such as cognitive and emotional deficits in children and adults, but the specific mechanisms by which it might impact the brain are poorly understood. Mice were exposed to filtered air, heat-inactivated Aspergillus versicolor (3 × 105 spores), or viable A. versicolor (3 × 105 spores) via nose-only inhalation exposure 2 times per week for 1, 2, or 4 weeks. Analysis of cortex, midbrain, olfactory bulb, and cerebellum tissue from mice exposed to viable A. versicolor spores for 1, 2, and 4 weeks revealed significantly elevated pro-inflammatory (Tnf and Il1b) and glial activity (Gdnf and Cxc3r1) gene expression in several brain regions when compared to filtered air control, with the most consistent and pronounced neuroimmune response 48H following the 4-week exposure in the midbrain and frontal lobe. Bulk RNA-seq analysis of the midbrain tissue confirmed that 4 weeks of A. versicolor exposure resulted in significant transcriptional enrichment of several biological pathways compared to the filtered air control, including neuroinflammation, glial cell activation, and regulation of postsynaptic organization. Upregulation of Drd1, Penk, and Pdyn mRNA expression was confirmed in the 4-week A. versicolor exposed midbrain tissue, highlighting that gene expression important for neurotransmission was affected by repeated A. versicolor inhalation exposure. Taken together, these findings indicate that the brain can detect and respond to A. versicolor inhalation exposure with changes in neuroimmune and neurotransmission gene expression, providing much needed insight into how inhaled fungal exposures can affect CNS responses and regulate neuroimmune homeostasis.Item Optimization of Aspergillus versicolor Culture and Aerosolization in a Murine Model of Inhalational Fungal Exposure(MDPI, 2023-11-08) Blackwood, Catherine B.; Croston, Tara L.; Barnes, Mark A.; Lemons, Angela R.; Rush, Rachael E.; Goldsmith, Travis; McKinney, Walter G.; Anderson, Stacey; Weaver, Kelly L.; Sulyok, Michael; Park, Ju-Hyeong; Germolec, Dori; Beezhold, Donald H.; Green, Brett; Pharmacology and Toxicology, School of MedicineAspergillus versicolor is ubiquitous in the environment and is particularly abundant in damp indoor spaces. Exposure to Aspergillus species, as well as other environmental fungi, has been linked to respiratory health outcomes, including asthma, allergy, and even local or disseminated infection. However, the pulmonary immunological mechanisms associated with repeated exposure to A. versicolor have remained relatively uncharacterized. Here, A. versicolor was cultured and desiccated on rice then placed in an acoustical generator system to achieve aerosolization. Mice were challenged with titrated doses of aerosolized conidia to examine deposition, lymphoproliferative properties, and immunotoxicological response to repeated inhalation exposures. The necessary dose to induce lymphoproliferation was identified, but not infection-like pathology. Further, it was determined that the dose was able to initiate localized immune responses. The data presented in this study demonstrate an optimized and reproducible method for delivering A. versicolor conidia to rodents via nose-only inhalation. Additionally, the feasibility of a long-term repeated exposure study was established. This experimental protocol can be used in future studies to investigate the physiological effects of repeated pulmonary exposure to fungal conidia utilizing a practical and relevant mode of delivery. In total, these data constitute an important foundation for subsequent research in the field.Item Pulmonary immune responses to Aspergillus fumigatus in an immunocompetent mouse model of repeated exposures(Taylor & Francis, 2014-04) Buskirk, Amanda D.; Templeton, Steven P.; Nayak, Ajay P.; Hettick, Justin M.; Law, Brandon F.; Green, Brett J.; Beezhold, Donald H.; Department of Microbiology & Immunology, IU School of MedicineAspergillus fumigatus is a filamentous fungus that produces abundant pigmented conidia. Several fungal components have been identified as virulence factors, including melanin; however, the impact of these factors in a repeated exposure model resembling natural environmental exposures remains unknown. This study examined the role of fungal melanin in the stimulation of pulmonary immune responses using immunocompetent BALB/c mice in a multiple exposure model. It compared conidia from wild-type A. fumigatus to two melanin mutants of the same strain, Δarp2 (tan) or Δalb1 (white). Mass spectrometry-based analysis of conidial extracts demonstrated that there was little difference in the protein fingerprint profiles between the three strains. Field emission scanning electron microscopy demonstrated that the immunologically inert Rodlet A layer remained intact in melanin-deficient conidia. Thus, the primary difference between the strains was the extent of melanization. Histopathology indicated that each A. fumigatus strain induced lung inflammation, regardless of the extent of melanization. In mice exposed to Δalb1 conidia, an increase in airway eosinophils and a decrease in neutrophils and CD8(+) IL-17(+) (Tc17) cells were observed. Additionally, it was shown that melanin mutant conidia were more rapidly cleared from the lungs than wild-type conidia. These data suggest that the presence of fungal melanin may modulate the pulmonary immune response in a mouse model of repeated exposures to A. fumigatus conidia.