- Browse by Author
Browsing by Author "Beckwith, Steven Wesley"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Ethanol pre-exposure does not increase delay discounting in P rats, but does impair the ability to dynamically adapt behavioral allocation to changing reinforcer contingencies(Elsevier, 2019-12) Beckwith, Steven Wesley; Czachowski, Cristine Lynn; Psychology, School of ScienceIncreased subjective discounting of delayed rewards is associated with substance abuse, and individuals tend to discount their drug of choice at a greater rate compared to monetary rewards. While there is evidence indicating that increased delay discounting (DD) is a risk factor for substance abuse, some results suggest that exposure to drugs of abuse also increases DD, but effects are mixed. The current study examined whether ethanol pre-exposure increases DD and if an ethanol reinforcer would be discounted at a greater rate than sucrose. Alcohol preferring (P) rats were pre-exposed to either ethanol or sucrose using an intermittent access protocol (IAP) for 8 weeks. Then animals completed an operant fixed choice procedure where each pre-exposure group was split into either an ethanol or sucrose reinforcer group. Afterwards, animals completed an adjusting delay DD task using the same groups as the fixed choice task. Animals that received access to ethanol in the IAP showed increased delayed reward preference in a delay and session dependent manner. Specifically, ethanol pre-exposed animals took more sessions to decrease their preference for the delayed reward at longer delays. In the adjusting delay task, no differences in mean adjusting delays were seen, but ethanol pre-exposure impaired animals' ability to reach stability criteria. The observed results are not consistent with ethanol pre-exposure causing a change in DD. Rather they indicate ethanol pre-exposure impaired animals' ability to reallocate their behavior in response to a change in reinforcer contingencies. The current findings extend prior results showing alcohol naïve P rats exhibit both increased DD and decreased response inhibition (Beckwith and Czachowski 2014, 2016) by demonstrating that after alcohol exposure they exhibit a form of behavioral inflexibility. Hence, a "two-hit" genetic vulnerability/environmental acceleration of addictive behavior is supported.Item Increased delay discounting tracks with later ethanol seeking but not consumption(2014-07-31) Beckwith, Steven Wesley; Czachowski, Cristine; Grahame, Nicholas J.; Lapish, ChristopherAssessments of delay discounting in rodent lines bidirectionally selected for home cage intake and preference of alcohol have had mixed findings. The current study sought to examine if delay discounting related differentially to alcohol seeking versus and alcohol drinking, two processes underlying alcohol intake and preference. Three strains of rats were utilized to answer this question Long Evans (LE), high alcohol drinking rats (HAD2), and alcohol preferring P rats. All strains were compared in an adjusting amount delay discounting task. Operant self-administration of alcohol was then assessed in the sipper tube model, and finally home cage drinking was assessed in a 24 hour 2 bottle choice paradigm. In the delay discounting it was found that the P rats were steeper discounters than both the LE and HAD2. In the sipper tube model, P rats displayed higher levels of seeking than both the HAD2s and the LE, but both the P rats and the HAD2s had higher intakes than the LE. During 24 hour home cage access, the P rats and the HAD2s had higher intake and preference for alcohol than the LE, but were not different from each other. These results show that increased discounting of delayed rewards tracks with appetitive processes versus consummatory factors and home cage intake of alcohol. This builds on prior findings using selected line pairs by providing an explanation for discordant results, and supports the hypotheses that increased delay discounting is an intermediate phenotype that predisposes individuals to alcohol use disorders.Item The role of the medial prefrontal cortex in delay discounting(2017) Beckwith, Steven Wesley; Czachowski, CristineIncreased delay discounting (DD) has been associated with and is theorized to contribute to alcoholism and substance abuse. It is also been associated with numerous other mental disorders and is believed to be a trans-disease process (i.e., a process that occurs in and contributes to multiple different pathologies). Consequently insights gained from studying DD are likely to apply to many different diseases. Studies on the neurobiological underpinnings of DD have two main interpretations. The first interpretation is that two different neurobehavioral systems exist, one favoring delayed rewards (executive system) and one favoring immediate rewards (impulsive system), and the system with the greater relative activation determines choice made by an individual. Alternatively, a single valuation system may exist. This system integrates different information about outcomes and generates a value signal that then guides decision making. Preclinical investigations have steered clear of these two different interpretations and rather focused on the role of individual structures in DD. One such structure, the rat mPFC, may generate an outcome representation of delayed rewards that is critically involved in attributing value to delayed rewards. Moreover, there is evidence indicating the rat mPFC may correspond to the primate dlPFC, an executive system structure. The current body of work set about testing the hypotheses that the mPFC is necessary for attributing value to delayed rewards and that decreasing the activity in an executive system area, and thus the executive system, shifts inter-temporal preference towards immediate rewards. To this end the rat mPFC was inactivated using an hM4Di inhibitory designer receptor exclusively activated by designer drugs (DREADD; experiment 1) or microinjections of tetrodotoxin (TTX; experiment 2) while animals completed an adjusting amount DD task. Activation of the hM4Di inhibitory DREADD receptor caused a decrease in DD, opposite of what was predicted. Electrophysiological recordings revealed a subpopulation of neurons actually increased their firing in response to hM4Di receptor activation, potentially explaining the unpredicted results. Microinjections of TTX to completely silence neural activity in the mPFC failed to produce a change in DD. Together both results indicate that mPFC activity is capable of manipulating but is not necessary for DD and the attribution of value to the delayed reward. Consequently, a secondary role for the rat mPFC in DD is proposed in line with single valuation system accounts of DD. Further investigations determining the primary structures responsible for sustaining delayed reward valuation and how manipulating the mPFC may be a means to decrease DD are warranted, and continued investigation that delineates the neurobiological processes of delayed reward valuation may provide valuable insight to both addiction and psychopathology.