- Browse by Author
Browsing by Author "Beck, Andrew H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group(Nature Research, 2020-05-12) Amgad, Mohamed; Stovgaard, Elisabeth Specht; Balslev, Eva; Thagaard, Jeppe; Chen, Weijie; Dudgeon, Sarah; Sharma, Ashish; Kerner, Jennifer K.; Denkert, Carsten; Yuan, Yinyin; AbdulJabbar, Khalid; Wienert, Stephan; Savas, Peter; Voorwerk, Leonie; Beck, Andrew H.; Madabhushi, Anant; Hartman, Johan; Sebastian, Manu M.; Horlings, Hugo M.; Hudeček, Jan; Ciompi, Francesco; Moore, David A.; Singh, Rajendra; Roblin, Elvire; Balancin, Marcelo Luiz; Mathieu, Marie-Christine; Lennerz, Jochen K.; Kirtani, Pawan; Chen, I-Chun; Braybrooke, Jeremy P.; Pruneri, Giancarlo; Demaria, Sandra; Adams, Sylvia; Schnitt, Stuart J.; Lakhani, Sunil R.; Rojo, Federico; Comerma, Laura; Badve, Sunil S.; Khojasteh, Mehrnoush; Symmans, W. Fraser; Sotiriou, Christos; Gonzalez-Ericsson, Paula; Pogue-Geile, Katherine L.; Kim, Rim S.; Rimm, David L.; Viale, Giuseppe; Hewitt, Stephen M.; Bartlett, John M. S.; Penault-Llorca, Frédérique; Goel, Shom; Lien, Huang-Chun; Loibl, Sibylle; Kos, Zuzana; Loi, Sherene; Hanna, Matthew G.; Michiels, Stefan; Kok, Marleen; Nielsen, Torsten O.; Lazar, Alexander J.; Bago-Horvath, Zsuzsanna; Kooreman, Loes F. S.; Van der Laak, Jeroen A.W. M.; Saltz, Joel; Gallas, Brandon D.; Kurkure, Uday; Barnes, Michael; Salgado, Roberto; Cooper, Lee A. D.; International Immuno-Oncology Biomarker Working Group; Pathology and Laboratory Medicine, School of MedicineAssessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring.Item SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression(Elsevier, 2015-09-17) Gan, Wenjian; Dai, Xiangpeng; Lunardi, Andrea; Li, Zhen; Inuzuka, Hiroyuki; Liu, Pengda; Varmeh, Shoreh; Zhang, Jinfang; Cheng, Liang; Sun, Yin; Asara, John M.; Beck, Andrew H.; Huang, Jiaoti; Pandolfi, Pier Paolo; Wei, Wenyi; Department of Pathology and Laboratory Medicine, IU School of MedicineThe ERG gene is fused to TMPRSS2 in approximately 50% of prostate cancers (PrCa), resulting in its overexpression. However, whether this is the sole mechanism underlying ERG elevation in PrCa is currently unclear. Here we report that ERG ubiquitination and degradation are governed by the Cullin 3-based ubiquitin ligase SPOP and that deficiency in this pathway leads to aberrant elevation of the ERG oncoprotein. Specifically, we find that truncated ERG (ΔERG), encoded by the ERG fusion gene, is stabilized by evading SPOP-mediated destruction, whereas prostate cancer-associated SPOP mutants are also deficient in promoting ERG ubiquitination. Furthermore, we show that the SPOP/ERG interaction is modulated by CKI-mediated phosphorylation. Importantly, we demonstrate that DNA damage drugs, topoisomerase inhibitors, can trigger CKI activation to restore the SPOP/ΔERG interaction and its consequent degradation. Therefore, SPOP functions as a tumor suppressor to negatively regulate the stability of the ERG oncoprotein in prostate cancer.