- Browse by Author
Browsing by Author "Baynam, Gareth"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item The Human Phenotype Ontology in 2017(Oxford Journals, 2016-11-24) Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin D.; McMurry, Julie A.; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; Laulederkind, Stanley J. F.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa A.; Robinson, Peter N.Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.Item Missense variants in TAF1 and developmental phenotypes: Challenges of determining pathogenicity(Wiley, 2019-10-23) Cheng, Hanyin; Capponi, Simona; Wakeling, Emma; Marchi, Elaine; Li, Quan; Zhao, Mengge; Weng, Chunhua; Piatek, Stefan G.; Ahlfors, Helena; Kleyner, Robert; Rope, Alan; Lumaka, Aimé; Lukusa, Prosper; Devriendt, Koenraad; Vermeesch, Joris; Posey, Jennifer E.; Palmer, Elizabeth E.; Murray, Lucinda; Leon, Eyby; Diaz, Jullianne; Worgan, Lisa; Mallawaarachchi, Amali; Vogt, Julie; de Munnik, Sonja A.; Dreyer, Lauren; Baynam, Gareth; Ewans, Lisa; Stark, Zornitza; Lunke, Sebastian; Gonçalves, Ana R.; Soares, Gabriela; Oliveira, Jorge; Fassi, Emily; Willing, Marcia; Waugh, Jeff L.; Faivre, Laurence; Riviere, Jean-Baptiste; Moutton, Sebastien; Mohammed, Shehla; Payne, Katelyn; Walsh, Laurence; Begtrup, Amber; Guillen Sacoto, Maria J.; Douglas, Ganka; Alexander, Nora; Buckley, Michael F.; Mark, Paul R.; Adès, Lesley C.; Sandaradura, Sarah A.; Lupski, James R.; Roscioli, Tony; Agrawal, Pankaj B.; Kline, Antonie D.; Wang, Kai; Timmers, T. Marc; Lyon, Gholson J.; Neurology, School of MedicineWe recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X.Item Plain-language medical vocabulary for precision diagnosis(Nature Research, 2018-04) Vasilevsky, Nicole A.; Foster, Erin D.; Engelstad, Mark E.; Carmody, Leigh; Might, Matt; Chambers, Chip; Dawkins, Hugh J. S.; Lewis, Janine; Della Rocca, Maria G.; Snyder, Michelle; Boerkoel, Cornelius F.; Rath, Ana; Terry, Sharon F.; Kent, Alastair; Searle, Beverly; Baynam, Gareth; Jones, Erik; Gavin, Pam; Bamshad, Michael; Chong, Jessica; Groza, Tudor; Adams, David; Resnick, Adam C.; Heath, Allison P.; Mungall, Chris; Holm, Ingrid A.; Rageth, Kayli; Brownstein, Catherine A.; Shefchek, Kent; McMurry, Julie A.; Robinson, Peter N.; Köhler, Sebastian; Haendel, Melissa A.; Medicine, School of MedicineItem The Human Phenotype Ontology in 2024: phenotypes around the world(Oxford University Press, 2024) Gargano, Michael A.; Matentzoglu, Nicolas; Coleman, Ben; Addo-Lartey, Eunice B.; Anagnostopoulos, Anna V.; Anderton, Joel; Avillach, Paul; Bagley, Anita M.; Bakštein, Eduard; Balhoff, James P.; Baynam, Gareth; Bello, Susan M.; Berk, Michael; Bertram, Holli; Bishop, Somer; Blau, Hannah; Bodenstein, David F.; Botas, Pablo; Boztug, Kaan; Čady, Jolana; Callahan, Tiffany J.; Cameron, Rhiannon; Carbon, Seth J.; Castellanos, Francisco; Caufield, J. Harry; Chan, Lauren E.; Chute, Christopher G.; Cruz-Rojo, Jaime; Dahan-Oliel, Noémi; Davids, Jon R.; de Dieuleveult, Maud; de Souza, Vinicius; de Vries, Bert B. A.; de Vries, Esther; DePaulo, J. Raymond; Derfalvi, Beata; Dhombres, Ferdinand; Diaz-Byrd, Claudia; Dingemans, Alexander J. M.; Donadille, Bruno; Duyzend, Michael; Elfeky, Reem; Essaid, Shahim; Fabrizzi, Carolina; Fico, Giovanna; Firth, Helen V.; Freudenberg-Hua, Yun; Fullerton, Janice M.; Gabriel, Davera L.; Gilmour, Kimberly; Giordano, Jessica; Goes, Fernando S.; Gore Moses, Rachel; Green, Ian; Griese, Matthias; Groza, Tudor; Gu, Weihong; Guthrie, Julia; Gyori, Benjamin; Hamosh, Ada; Hanauer, Marc; Hanušová, Kateřina; He, Yongqun Oliver; Hegde, Harshad; Helbig, Ingo; Holasová, Kateřina; Hoyt, Charles Tapley; Huang, Shangzhi; Hurwitz, Eric; Jacobsen, Julius O. B.; Jiang, Xiaofeng; Joseph, Lisa; Keramatian, Kamyar; King, Bryan; Knoflach, Katrin; Koolen, David A.; Kraus, Megan L.; Kroll, Carlo; Kusters, Maaike; Ladewig, Markus S.; Lagorce, David; Lai, Meng-Chuan; Lapunzina, Pablo; Laraway, Bryan; Lewis-Smith, David; Li, Xiarong; Lucano, Caterina; Majd, Marzieh; Marazita, Mary L.; Martinez-Glez, Victor; McHenry, Toby H.; McInnis, Melvin G.; McMurry, Julie A.; Mihulová, Michaela; Millett, Caitlin E.; Mitchell, Philip B.; Moslerová, Veronika; Narutomi, Kenji; Nematollahi, Shahrzad; Nevado, Julian; Nierenberg, Andrew A.; Novák Čajbiková, Nikola; Nurnberger, John I., Jr.; Ogishima, Soichi; Olson, Daniel; Ortiz, Abigail; Pachajoa, Harry; Perez de Nanclares, Guiomar; Peters, Amy; Putman, Tim; Rapp, Christina K.; Rath, Ana; Reese, Justin; Rekerle, Lauren; Roberts, Angharad M.; Roy, Suzy; Sanders, Stephan J.; Schuetz, Catharina; Schulte, Eva C.; Schulze, Thomas G.; Schwarz, Martin; Scott, Katie; Seelow, Dominik; Seitz, Berthold; Shen, Yiping; Similuk, Morgan N.; Simon, Eric S.; Singh, Balwinder; Smedley, Damian; Smith, Cynthia L.; Smolinsky, Jake T.; Sperry, Sarah; Stafford, Elizabeth; Stefancsik, Ray; Steinhaus, Robin; Strawbridge, Rebecca; Sundaramurthi, Jagadish Chandrabose; Talapova, Polina; Tenorio Castano, Jair A.; Tesner, Pavel; Thomas, Rhys H.; Thurm, Audrey; Turnovec, Marek; van Gijn, Marielle E.; Vasilevsky, Nicole A.; Vlčková, Markéta; Walden, Anita; Wang, Kai; Wapner, Ron; Ware, James S.; Wiafe, Addo A.; Wiafe, Samuel A.; Wiggins, Lisa D.; Williams, Andrew E.; Wu, Chen; Wyrwoll, Margot J.; Xiong, Hui; Yalin, Nefize; Yamamoto, Yasunori; Yatham, Lakshmi N.; Yocum, Anastasia K.; Young, Allan H.; Yüksel, Zafer; Zandi, Peter P.; Zankl, Andreas; Zarante, Ignacio; Zvolský, Miroslav; Toro, Sabrina; Carmody, Leigh C.; Harris, Nomi L.; Munoz-Torres, Monica C.; Danis, Daniel; Mungall, Christopher J.; Köhler, Sebastian; Haendel, Melissa A.; Robinson, Peter N.; Psychiatry, School of MedicineThe Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.