- Browse by Author
Browsing by Author "Baylin, Stephen B."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Bacterial-Driven Inflammation and Mutant BRAF Expression Combine to Promote Murine Colon Tumorigenesis That Is Sensitive to Immune Checkpoint Therapy(American Association for Cancer Research, 2021) DeStefano Shields, Christina E.; White, James R.; Chung, Liam; Wenzel, Alyssa; Hicks, Jessica L.; Tam, Ada J.; Chan, June L.; Dejea, Christine M.; Fan, Hongni; Michel, John; Maiuri, Ashley R.; Sriramkumar, Shruthi; Podicheti, Ram; Rusch, Douglas B.; Wang, Hao; De Marzo, Angelo M.; Besharati, Sepideh; Anders, Robert A.; Baylin, Stephen B.; O’Hagan, Heather M.; Housseau, Franck; Sears, Cynthia L.; Medical and Molecular Genetics, School of MedicineColorectal cancer is multifaceted, with subtypes defined by genetic, histologic, and immunologic features that are potentially influenced by inflammation, mutagens, and/or microbiota. Colorectal cancers with activating mutations in BRAF are associated with distinct clinical characteristics, although the pathogenesis is not well understood. The Wnt-driven multiple intestinal neoplasia (MinApcΔ716/+) enterotoxigenic Bacteroides fragilis (ETBF) murine model is characterized by IL17-dependent, distal colon adenomas. Herein, we report that the addition of the BRAF V600E mutation to this model results in the emergence of a distinct locus of midcolon tumors. In ETBF-colonized BRAF V600E Lgr5 CreMin (BLM) mice, tumors have similarities to human BRAF V600E tumors, including histology, CpG island DNA hypermethylation, and immune signatures. In comparison to Min ETBF tumors, BLM ETBF tumors are infiltrated by CD8+ T cells, express IFNγ signatures, and are sensitive to anti-PD-L1 treatment. These results provide direct evidence for critical roles of host genetic and microbiota interactions in colorectal cancer pathogenesis and sensitivity to immunotherapy. SIGNIFICANCE: Colorectal cancers with BRAF mutations have distinct characteristics. We present evidence of specific colorectal cancer gene-microbial interactions in which colonization with toxigenic bacteria drives tumorigenesis in BRAF V600E Lgr5 CreMin mice, wherein tumors phenocopy aspects of human BRAF-mutated tumors and have a distinct IFNγ-dominant immune microenvironment uniquely responsive to immune checkpoint blockade.Item An Effective Epigenetic-PARP Inhibitor Combination Therapy for Breast and Ovarian Cancers Independent of BRCA Mutations(AACR, 2018-07) Pulliam, Nicholas; Fang, Fang; Ozes, Ali R.; Tang, Jessica; Adewuyi, Adeoluwa; Keer, Harold; Lyons, John; Baylin, Stephen B.; Matei, Daniela; Nakshatri, Harikrishna; Rassool, Feyruz V.; Miller, Kathy D.; Nephew, Kenneth P.; Medicine, School of MedicinePurpose: PARP inhibitors (PARPi) are primarily effective against BRCA1/2-mutated breast and ovarian cancers, but resistance due to reversion of mutated BRCA1/2 and other mechanisms is common. Based on previous reports demonstrating a functional role for DNMT1 in DNA repair and our previous studies demonstrating an ability of DNA methyltransferase inhibitor (DNMTi) to resensitize tumors to primary therapies, we hypothesized that combining a DNMTi with PARPi would sensitize PARPi-resistant breast and ovarian cancers to PARPi therapy, independent of BRCA status. Experimental Design: Breast and ovarian cancer cell lines (BRCA-wild-type/mutant) were treated with PARPi talazoparib and DNMTi guadecitabine. Effects on cell survival, ROS accumulation, and cAMP levels were examined. In vivo, mice bearing either BRCA-proficient breast or ovarian cancer cells were treated with talazoparib and guadecitabine, alone or in combination. Tumor progression, gene expression, and overall survival were analyzed. Results: Combination of guadecitabine and talazoparib synergized to enhance PARPi efficacy, irrespective of BRCA mutation status. Coadministration of guadecitabine with talazoparib increased accumulation of ROS, promoted PARP activation, and further sensitized, in a cAMP/PKA-dependent manner, breast and ovarian cancer cells to PARPi. In addition, DNMTi enhanced PARP “trapping” by talazoparib. Guadecitabine plus talazoparib decreased xenograft tumor growth and increased overall survival in BRCA-proficient high-grade serous ovarian and triple-negative breast cancer models. Conclusions: The novel combination of the next-generation DNMTi guadecitabine and the first-in-class PARPi talazoparib inhibited breast and ovarian cancers harboring either wild-type– or mutant-BRCA, supporting further clinical exploration of this drug combination in PARPi-resistant cancers.Item Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage(Oxford University Press, 2016-06) Ding, Ning; Bonham, Emily M.; Hannon, Brooke E.; Amick, Thomas R.; Baylin, Stephen B.; O'Hagan, Heather M.; Medical and Molecular Genetics, School of MedicineAt sites of chronic inflammation, epithelial cells are exposed to high levels of reactive oxygen species and undergo cancer-associated DNA methylation changes, suggesting that inflammation may initiate epigenetic alterations. Previously, we demonstrated that oxidative damage causes epigenetic silencing proteins to become part of a large complex that is localized to GC-rich regions of the genome, including promoter CpG islands that are epigenetically silenced in cancer. However, whether these proteins were recruited directly to damaged DNA or during the DNA repair process was unknown. Here we demonstrate that the mismatch repair protein heterodimer MSH2-MSH6 participates in the oxidative damage-induced recruitment of DNA methyltransferase 1 (DNMT1) to chromatin. Hydrogen peroxide treatment induces the interaction of MSH2-MSH6 with DNMT1, suggesting that the recruitment is through a protein–protein interaction. Importantly, the reduction in transcription for genes with CpG island-containing promoters caused by oxidative damage is abrogated by knockdown of MSH6 and/or DNMT1. Our findings provide evidence that the role of DNMT1 at sites of oxidative damage is to reduce transcription, potentially preventing transcription from interfering with the repair process. This study uniquely brings together several factors that are known to contribute to colon cancer, namely inflammation, mismatch repair proteins, and epigenetic changes.Item Select EZH2 inhibitors enhance viral mimicry effects of DNMT inhibition through a mechanism involving NFAT:AP-1 signaling(American Association for the Advancement of Science, 2024) Chomiak, Alison A.; Tiedemann, Rochelle L.; Liu, Yanqing; Kong, Xiangqian; Cui, Ying; Wiseman, Ashley K.; Thurlow, Kate E.; Cornett, Evan M.; Topper, Michael J.; Baylin, Stephen B.; Rothbart, Scott B.; Biochemistry and Molecular Biology, School of MedicineDNA methyltransferase inhibitor (DNMTi) efficacy in solid tumors is limited. Colon cancer cells exposed to DNMTi accumulate lysine-27 trimethylation on histone H3 (H3K27me3). We propose this Enhancer of Zeste Homolog 2 (EZH2)-dependent repressive modification limits DNMTi efficacy. Here, we show that low-dose DNMTi treatment sensitizes colon cancer cells to select EZH2 inhibitors (EZH2is). Integrative epigenomic analysis reveals that DNMTi-induced H3K27me3 accumulates at genomic regions poised with EZH2. Notably, combined EZH2i and DNMTi alters the epigenomic landscape to transcriptionally up-regulate the calcium-induced nuclear factor of activated T cells (NFAT):activating protein 1 (AP-1) signaling pathway. Blocking this pathway limits transcriptional activating effects of these drugs, including transposable element and innate immune response gene expression involved in viral defense. Analysis of primary human colon cancer specimens reveals positive correlations between DNMTi-, innate immune response-, and calcium signaling-associated transcription profiles. Collectively, we show that compensatory EZH2 activity limits DNMTi efficacy in colon cancer and link NFAT:AP-1 signaling to epigenetic therapy-induced viral mimicry.