ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Baucum II, Anthony J."

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    CaMKII Phosphorylation of the Voltage-Gated Sodium Channel Nav1.6 Regulates Channel Function and Neuronal Excitability
    (2021-01) Zybura, Agnes Sara; Cummins, Theodore R.; Hudmon, Andy; Baucum II, Anthony J.; Sheets, Patrick L.
    Voltage-gated sodium channels (Navs) undergo remarkably complex modes of modulation to fine tune membrane excitability and neuronal firing properties. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Thus, Nav1.6 modulation and dysfunction may profoundly impact the input-output properties of neurons in normal and pathological conditions. Phosphorylation is a powerful and reversible mechanism that exquisitely modulates ion channels. To this end, the multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) can transduce neuronal activity through phosphorylation of diverse substrates to serve as a master regulator of neuronal function. Because Nav1.6 and CaMKII are independently linked to excitability disorders, I sought to investigate modulation of Nav1.6 function by CaMKII signaling to reveal an important mechanism underlying neuronal excitability. Multiple biochemical approaches show Nav1.6 is a novel substrate for CaMKII and reveal multi-site phosphorylation within the L1 domain; a hotspot for post-translational regulation in other Nav isoforms. Consistent with these findings, pharmacological inhibition of CaMKII reduces transient and persistent sodium currents in Purkinje neurons. Because Nav1.6 is the predominant sodium current observed in Purkinje neurons, these data suggest that Nav1.6 may be modulated through CaMKII signaling. In support of this, my studies demonstrate that CaMKII inhibition significantly attenuates Nav1.6 transient and persistent sodium currents and shifts the voltage-dependence of activation to more depolarizing potentials in heterologous cells. Interestingly, I show that these functional effects are likely mediated by CaMKII phosphorylation of Nav1.6 at S561 and T642, and that each phosphorylation site regulates distinct biophysical characteristics of the channel. These findings are further extended to investigate CaMKII modulation of disease-linked mutant Nav1.6 channels. I show that different Nav1.6 mutants display distinct responses to CaMKII modulation and reveal that acute CaMKII inhibition attenuates gain-of-function effects produced by mutant channels. Importantly, computational simulations modeling the effects of CaMKII inhibition on WT and mutant Nav1.6 channels demonstrate dramatic reductions in neuronal excitability in Purkinje and cortical pyramidal cell models. Together, these findings suggest that CaMKII modulation of Nav1.6 may be a powerful mechanism to regulate physiological and pathological neuronal excitability.
  • Loading...
    Thumbnail Image
    Item
    Chronic Stress and Sex as Mediators of the Basolateral-Centromedial Amygdala Circuit and its Response to Acute Ethanol
    (2020-05) Gainey, Sean; Logrip, Marian L.; Lapish, Christopher C.; Baucum II, Anthony J.
    Anxiety disorders are the most common class of mental disorders in the United States, and they both promote and exacerbate disorders of substance abuse. Mounting evidence of sex differences in the relationship between anxiety disorders and alcoholism supports the potential existence of an anxiety-dependent vulnerability to alcohol abuse in women compared with men. One potential point of overlap in the physiological systems involved in anxiety response and reward processing is the amygdala. Here, a model of chronic stress in rodents was employed to probe changes in the electrophysiological and biochemical properties of the amygdala at a post-stress baseline and during a post-stress first exposure to alcohol. Electrophysiological data revealed that neurons in the centromedial amygdala were more responsive to stimulation in the basolateral amygdala in females compared with males, but a history of chronic stress altered the female response to match that of males with or without a history of chronic stress. Protein analysis of postsynaptic glutamatergic receptor expression and phosphorylation in the amygdala did not indicate any differences based on sex or exposure to stress or alcohol. These data demonstrate a sex difference in stress-induced alterations in amygdala circuitry and indicate a potential role for this circuitry in the comorbidity of anxiety disorders and alcoholism.
  • Loading...
    Thumbnail Image
    Item
    Does spinophilin play a role in alteration of NMDAR phosphorylation?
    (Office of the Vice Chancellor for Research, 2016-04-08) Salek, Asma B.; McBride, Jonathon; Edler Jr., Michael C.; Baucum II, Anthony J.
    Normal brain function requires proper organization of downstream signaling pathways. This organization can be modulated by protein phosphorylation. Protein phosphorylation is a balance of phosphatases, such as protein phosphatase 1 (PP1), and kinases such as protein kinase A (PKA) and cyclin dependent kinase 5 (CDK5). Proper targeting of these proteins is critical for their normal function and is perturbed in various disease states. Spinophilin is critical in targeting PP1 to various substrates making it important in regulating the phosphorylation state and thus the function of various proteins including glutamate receptors, such as AMPARs and NMDARs. NMDARs are abundant postsynaptic proteins that are critical for normal synaptic communication. It has been reported that NMDAR phosphorylation modulates channel function. Here we aim to understand if spinophilin regulates NMDAR phosphorylation and function as well as the mechanisms by which the spinophilin NMDAR interaction are altered. Specifically, we have found that the presence of spinophilin decreases the abundance of PP1 bound to NMDAR. This affect was not observed when a PP1 binding-deficient spinophilin mutant (F451A) was expressed. Furthermore, activation of endogenous PKA and/or overexpression of PKA catalytic subunit robustly increased the association between spinophilin and GluN1 and C-terminal tail of the GluN2B subunit of the NMDAR. Conversely, these associations are decreased when CDK5 is present. Our future studies will evaluate the role of spinophilin in regulating the phosphorylation state of the NMDAR. Taken together, our data demonstrate that spinophilin can associate with multiple subunits of the NMDAR in HEK293 cells and that protein kinases can biphasically modulate these associations.
  • Loading...
    Thumbnail Image
    Item
    Phosphodiesterase 1 (PDE1) at the crossroads of calcium and cyclic nucleotide signaling in diabetic nephropathy
    (2020-05) Dey, Asim Bikash; Aguilar, Ruben C.; Dai, Guoli; Atkinson, Simon J.; Kowala, Mark C.; Baucum II, Anthony J.
    Diabetic Kidney Disease (DKD) is a major complication of diabetes. Incomplete understanding of its molecular mechanisms is highlighted by the limited treatments options. We hypothesized that inhibition of protective endogenous mechanisms plays major role in the pathogenesis of DKD. While renoprotection is mediated by cyclic nucleotides (cAMP and cGMP), phosphodiesterases (PDEs) lead to cyclic nucleotide degradation. Our investigation focused on the role of calcium/calmodulin activated PDE1 in DKD. Three isoforms of PDE1 are differentially expressed in vascular smooth muscle cells, renal tubular epithelial cells, podocytes, and mesangial cells. We used highly potent and selective PDE1 inhibitor LY1 to explore systemic hemodynamic and local renal role of PDE1. LY1 reduced systolic and diastolic blood pressure in normotensive and spontaneously hypertensive rats. Renal protection with PDE1 inhibition was tested in mouse model of DKD, featuring a combination of diabetes, nephron loss and arterial hypertension. In this model, a PDE1 inhibitor caused a significant improvement in renal function as evident by significant reduction of albuminuria, serum creatinine and several urine biomarkers of inflammation and injury. Histopathological analysis revealed substantial improvement in the pathology of DKD in the treated group that was associated with the reduction of gene expression related to inflammation and fibrosis. Thus, we revealed the role of calcium activated PDE1 in DKD. However, the source of calcium in this context remained obscure. Our bioinformatics analysis pointed out that calcium channel TRPC6 is likely to be involved. Further in vitro studies demonstrated that TRPC6 activation induced apoptosis in human mesangial cells and isolated rat glomeruli, which was attenuated by both TRPC6 and PDE1 inhibition, thereby suggesting a functional coupling between TRPC6 (as a source of calcium) and PDE1 activation. Moving upstream, we showed that several systemic risk factors of DKD (angiotensin II, endothelin 1 and glucose) activated TRPC6 in a different manner, through generation of either reactive oxygen species or diacylglycerol. The computational modeling to relate human transcriptomic and phenotype data demonstrated the pre-clinical findings of renal benefit upon PDE1 inhibition is translatable in human. Taken together, our results suggest mechanistic link among systemic risk factors, TRPC6, calcium flux and PDE1 activation in pathogenesis of DKD. As a corollary, PDE1 inhibition leads to direct and indirect renoprotective effects.
  • Loading...
    Thumbnail Image
    Item
    Stereocilia Morphogenesis and Maintenance is Dependent on the Dynamics of Actin Cytoskeletal Proteins
    (2019-05) Roy, Pallabi; Perrin, Benjamin J.; Atkinson, Simon J.; Belecky-Adams, Teri; Hashino, Eri; Baucum II, Anthony J.
    Age-related hearing loss is an acute health problem affecting people worldwide, often arising due to defects in the proper functioning of sensory hair cells in the inner ear. The apical surface of sensory hair cells contains actin-based protrusions known as stereocilia, which detect sound and head movements. Since hair cells are not regenerated in mammals, it is important to maintain the functioning of stereocilia for the life of an organism to maintain hearing ability. The actin filaments within a stereocilium are extensively crosslinked by various actin crosslinking proteins, which are important for stereocilia development and maintenance. Multiple studies have shown that the stereocilia actin core is exceptionally stable whereas actin is dynamic only at the tips of stereocilia. However, whether the actin crosslinking proteins, which are nearly as abundant as actin itself, are similarly stable or can freely move in and out of the core remains unknown. Loss or mutation of crosslinkers like plastin-1, fascin-2, and XIRP2 causes progressive hearing loss along with stereocilia degeneration while loss of espin prevents stereocilia from even developing properly. Do these phenotypes stem from an unstable stereocilia core? Does crosslinking confer stability to the core? To address these questions, we generated novel transgenic reporter lines to monitor the dynamics of actin in mice carrying fascin-2R109H mutation and espin null mice and also to study the dynamics of actin crosslinkers, in vivo and ex-vivo. We established that actin crosslinkers readily exchange within the highly stable F-actin structure of the stereocilia core. In addition, we determined that stereocilia degeneration in mice carrying fascin-2R109H mutation and espin null mice could possibly occur due to a less stable actin core. These studies suggest that dynamic crosslinks stabilize the core to maintain proper stereocilia functioning. Future work warrants understanding the reason behind the importance of dynamic crosslinks within a stable stereocilia core. Actin stability not only depends on actin crosslinkers, but also on actin filament composition as evident from distinct stereocilia degeneration and progressive hearing loss patterns in hair-cell specific knockout of actin isoforms. Although beta- and gamma- actin polypeptide sequences differ by only 14 four amino acids, whether the latter determine the unique function of each cytoplasmic actin isoform was previously unknown. Here we determined that these four critical amino acids determine the unique functional importance of beta-actin isoform in sensory hair cells. Taken together, our study demonstrates that actin cytoskeletal proteins are important for the morphogenesis and maintenance of stereocilia.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University