- Browse by Author
Browsing by Author "Bard, Martin"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Aerobic Uptake of Cholesterol by Ergosterol Auxotrophic Strains in Candida glabrata & Random and Site-Directed Mutagenesis of ERG25 in Saccharomyces cerevisiae(2012-09-27) Whybrew, Jennafer Marie; Bard, Martin; Lees, N. Douglas; Blacklock, BrendaCandida albicans and Candida glabrata are opportunistic human pathogens that are the leading cause of fungal infections, which are increasingly becoming the leading cause of sepsis in immunosuppressed individuals. C. glabrata in particular has become a significant concern due to the increase in clinical isolates that demonstrate resistance to triazole antifungal drugs, the most prevalent treatment for such infections. Triazole drugs target the ERG11 gene product and prevent C-14 demethylation of the first sterol intermediate, lanosterol, preventing the production of the pathways end product ergosterol. Ergosterol is required by yeast for cell membrane fluidity and cell signaling. Furthermore, C. glabrata, and not C. albicans, has been reported to utilize cholesterol as a supplement for growth. Although drug resistance is known to be caused by an increase in expression of drug efflux pumps, we hypothesize a second mechanism: that the overuse of triazole drugs has lead to the increase of resistance by C. glabrata through a 2-step process: 1) the accumulation of ergosterol auxotrophic mutations and 2) mutants able to take up exogenous cholesterol anaerobically in the body acquire a second mutation allowing uptake of cholesterol aerobically. Two groups of sterol auxotrophic C. glabrata clinical isolates have been reported to take up sterol aerobically but do not produce a sterol precursor. Sterol auxotrophs have been created in C. glabrata by disrupting different essential genes (ERG1, ERG7, ERG11, ERG25, and ERG27) in the ergosterol pathway to assess which ergosterol mutants will take up sterols aerobically. Random and site-directed mutagenesis was also completed in ERG25 of Saccharmoyces cerevisiae. The ERG25 gene encodes a sterol C-4 methyloxidase essential for sterol biosynthesis in plants, animals, and yeast. This gene functions in turn with ERG26, a sterol C-3 dehydrogenase, and ERG27, a sterol C-3 keto reductase, to remove two methyl groups at the C-4 position on the sterol A ring. In S. cerevisiae, ERG25 has four putative histidine clusters, which bind non-heme iron and a C-terminal KKXX motif, which is a Golgi to ER retrieval motif. We have conducted site-directed and random mutagenesis in the S. cerevisiae wild-type strain SCY876. Site-Directed mutagenesis focused on the four histidine clusters, the KKXX C-terminal motif and other conserved amino acids among various plant, animal, and fungal species. Random mutagenesis was completed with a procedure known as gap repair and was used in an effort to find novel changes in enzyme function outside of the parameters utilized for site-directed mutagenesis. The four putative histidine clusters are expected to be essential for gene function by acting as non-heme iron binding ligands bringing in the oxygen required for the oxidation-reduction in the C-4 demethylation reaction.Item Altered sterol metabolism in budding yeast affects mitochondrial iron–sulfur (Fe-S) cluster synthesis(American Society for Biochemistry and Molecular Biology, 2018-07-06) Ward, Diane M.; Chen, Opal S.; Li, Liangtao; Kaplan, Jerry; Bhuiyan, Shah Alam; Natarajan, Selvamuthu K.; Bard, Martin; Cox, James E.; Microbiology & Immunology, IU School of MedicineErgosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial iron metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29 Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increases mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism.Item Genome-destabilizing and Mutagenic Effects of Break-induced Replication in Saccharomyces cerevisiae(2011-05) Deem, Angela Kay; Stauffacher, Cyntha V.; Bard, Martin; Malkova, Anna; Randall, Stephen Karl, 1953-; Turchi, JohnDNA suffers constant damage, leading to a variety of lesions that require repair. One of the most devastating lesions is a double-strand break (DSB), which results in physical dissociation of two pieces of a chromosome. Necessarily, cells have evolved a number of DSB repair mechanisms. One mechanism of DSB repair is break-induced replication (BIR), which involves invasion of one side of the broken chromosome into a homologous template, followed by copying of the donor molecule through telomeric sequences. BIR is an important cellular process implicated in the restart of collapsed replication forks, as well as in various chromosomal instabilities. Furthermore, BIR uniquely combines processive replication involving a replication fork with DSB repair. This work employs a system in Saccharomyces cerevisiae to investigate genetic control, physical outcomes, and frameshift mutagenesis associated with BIR initiated by a controlled HO-endonuclease break in a chromosome. Mutations in POL32, which encodes a third, non-essential subunit of polymerase delta (Pol delta), as well as RAD9 and RAD24, which participate in the DNA damage checkpoint response, resulted in a BIR defect characterized by decreased BIR repair and increased loss of the broken chromosome. Also, increased incidence of chromosomal fusions determined to be half-crossover (HCO) molecules was confirmed in pol32 and rad24, as well as a rad9rad50S double mutant. HCO formation was also stimulated by addition of a replication-inhibiting drug, methyl-methane sulfonate (MMS), to cells undergoing BIR repair. Based on these data, it is proposed that interruption of BIR after it has initiated is one mechanism of HCO formation. Addition of a frameshift mutation reporter to this system allowed mutagenesis associated with BIR DNA synthesis to be measured. It is demonstrated that BIR DNA synthesis is intrinsically inaccurate over the entire path of the replication fork, as the rate of frameshift mutagenesis during BIR is up to 2800-fold higher than normal replication. Importantly, this high rate of mutagenesis was observed not only close to the DSB where BIR is less stable, but also far from the DSB where the BIR replication fork is fast and stabilized. Pol proofreading and mismatch repair (MMR) are confirmed to correct BIR errors. Based on these data, it is proposed that a high level of DNA polymerase errors that is not fully compensated by error-correction mechanisms is largely responsible for mutagenesis during BIR. Pif1p, a helicase that is non-essential for DNA replication, and elevated dNTP levels during BIR also contributed to BIR mutagenesis. Taken together, this work characterizes BIR as an essential repair process that also poses risks to a cell, including genome destabilization and hypermutagenesis.Item The integrated stress response directs cell fate decisions in response to perturbations in protein homeostasis(2013-05) Teske, Brian Frederick; Wek, Ronald C.; Bard, Martin; Quilliam, Lawrence; Wells, Clark D.Disruptions of the endoplasmic reticulum (ER) cause perturbations in protein folding and result in a cellular condition known as ER stress. ER stress and the accumulation of unfolded protein activate the unfolded protein response (UPR) which is a cellular attempt to remedy the toxic accumulation of unfolded proteins. The UPR is implemented through three ER stress sensors PERK, ATF6, and IRE1. Phosphorylation of the α-subunit of eIF2 by PERK during ER stress represses protein synthesis and also induces preferential translation of ATF4, a transcriptional activator of stress response genes. Early UPR signaling involves translational and transcriptional changes in gene expression that is geared toward stress remedy. However, prolonged ER stress that is not alleviated can trigger apoptosis. This dual signaling nature of the UPR is proposed to mimic a 'binary switch' and the regulation of this switch is a key topic of this thesis. Adaptive gene expression aimed at balancing protein homeostasis encompasses the first phase of the UPR. In this study we show that the PERK/eIF2~P/ATF4 pathway facilitates both the synthesis of ATF6 and trafficking of ATF6 from the ER to the Golgi where ATF6 is activated. Liver-specific depletion of PERK significantly lowers expression of survival genes, leading to reduced expression of protein chaperones. As a consequence, loss of PERK in the liver sensitizes cells to stress which ultimately leads to apoptosis. Despite important roles in survival, PERK signaling is often extended to the vii activation of other downstream transcription factors such as CHOP, a direct target of ATF4-mediated transcription. Accumulation of CHOP is a hallmark of the second phase in the binary switch model where CHOP is shown to be required for full activation of apoptosis. Here the transcription factor ATF5 is found to be induced by CHOP and that loss of ATF5 improves the survival of cells following changes in protein homeostasis. Taken together this study highlights the importance of UPR signaling in determining the balance between cell survival and cell death. A topic that is important for understanding the more complex pathological conditions of diseases such as diabetes, cancer, and neurodegeneration.Item Integration of general amino acid control and TOR regulatory pathways in yeast(2010-05) Staschke, Kirk Alan; Wek, Ronald C.; Edenberg, Howard J.; Roach, Peter J.; Bard, MartinTwo important nutrient sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism in response to changes in nutrient availability. Starvation for amino acids activates the GAAC through Gcn2p phosphorylation of the translation initiation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors, such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that the GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. While Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p activates genes required for assimilation of secondary nitrogen sources, such as -amino-butyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.Item Multiple, Nutrient Sensing Kinases Converge to Phosphorylate an Element of cdc34 That Increases Saccharomyces Cerevisiae Lifespan(2009-08) Cocklin, Ross Roland; Goebl, Mark G.; Bard, Martin; Harrington, Maureen; Harris, Robert; Wang, MuGrowth and division are tightly coordinated with available nutrient conditions. Cells of the budding yeast, Saccharomyces cerevisiae, grow to a larger size prior to budding and DNA replication when preferred carbon sources such as glucose, as opposed to less preferred sources like ethanol and acetate, are available. A culture’s doubling time is also significantly reduced when the available carbon and nitrogen sources are more favorable. These physiological phenomena are well documented but the precise molecular mechanisms relaying nutrient conditions to the growth and division machinery are not well defined. I demonstrate here that Cdc34, the ubiquitin conjugating enzyme that promotes S phase entry, is phosphorylated upon a highly conserved serine residue which is part of a motif that defines the family of Cdc34/Ubc7 ubiquitin conjugating enzymes. This phosphorylation is regulated by multiple, nutrient sensing kinases including Protein Kinase A, Sch9 and TOR. Furthermore, this phosphorylation event is regulated through the cell cycle with the sole induction occurring in the G1 phase which is when nutrients are sensed and cells commit to another round of division. This phosphorylation likely activates Cdc34 and in turn propagates a signal to the cell division cycle machinery that nutrient conditions are favorable for commitment to a new round of division. This phosphorylation is critical for normal cell cycle progression but must be carefully controlled when cells are deprived of nutrients. Crippling the activity of Protein Kinase A, SCH9 or TOR increases the proportion of cells that survive stationary phase conditions, which because of the metabolic conditions that must be maintained and the similarity to post-mitotic mammalian cells, is referred to as a yeast culture’s chronological lifespan. Yeast cells expressing Cdc34 mutants that are no longer subject to this regulation by phosphorylation have a reduced chronological lifespan. A precise molecular mechanism describing the change in Cdc34 activity after phosphorylation of this serine residue is discussed.Item A Sterol-Regulatory Element Binding Protein Is Required for Cell Polarity, Hypoxia Adaptation, Azole Drug Resistance, and Virulence in Aspergillus fumigatus(PLOS, 2008-11-07) Willger, Sven D.; Puttikamonkul, Srisombat; Kim, Kwang-Hyung; Burritt, James B.; Grahl, Nora; Metzler, Laurel J.; Barbuch, Robert; Bard, Martin; Lawrence, Christopher B.; Cramer Jr., Robert A.; Biology, School of ScienceAt the site of microbial infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments in which both the pathogen and host cells must survive. Currently, whether hypoxia adaptation is an important virulence attribute of opportunistic pathogenic molds is unknown. Here we report the characterization of a sterol-regulatory element binding protein, SrbA, in the opportunistic pathogenic mold, Aspergillus fumigatus. Loss of SrbA results in a mutant strain of the fungus that is incapable of growth in a hypoxic environment and consequently incapable of causing disease in two distinct murine models of invasive pulmonary aspergillosis (IPA). Transcriptional profiling revealed 87 genes that are affected by loss of SrbA function. Annotation of these genes implicated SrbA in maintaining sterol biosynthesis and hyphal morphology. Further examination of the SrbA null mutant consequently revealed that SrbA plays a critical role in ergosterol biosynthesis, resistance to the azole class of antifungal drugs, and in maintenance of cell polarity in A. fumigatus. Significantly, the SrbA null mutant was highly susceptible to fluconazole and voriconazole. Thus, these findings present a new function of SREBP proteins in filamentous fungi, and demonstrate for the first time that hypoxia adaptation is likely an important virulence attribute of pathogenic molds.