- Browse by Author
Browsing by Author "Bansal, Neha"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Cardiac Imaging and Biomarkers for Assessing Myocardial Fibrosis in Children with Hypertrophic Cardiomyopathy(Elsevier, 2023) Kirmani, Sonya; Woodard, Pamela K.; Shi, Ling; Hamza, Taye H.; Canter, Charles E.; Colan, Steven D.; Pahl, Elfriede; Towbin, Jeffrey A.; Webber, Steven A.; Rossano, Joseph W.; Everitt, Melanie D.; Molina, Kimberly M.; Kantor, Paul F.; Jefferies, John L.; Feingold, Brian; Addonizio, Linda J.; Ware, Stephanie M.; Chung, Wendy K.; Ballweg, Jean A.; Lee, Teresa M.; Bansal, Neha; Razoky, Hiedy; Czachor, Jason; Lunze, Fatima I.; Marcus, Edward; Commean, Paul; Wilkinson, James D.; Lipshultz, Steven E.; Pediatrics, School of MedicineBackground: Myocardial fibrosis, as diagnosed on cardiac magnetic resonance imaging (cMRI) by late gadolinium enhancement (LGE), is associated with adverse outcomes in adults with hypertrophic cardiomyopathy (HCM), but its prevalence and magnitude in children with HCM have not been established. We investigated: (1) the prevalence and extent of myocardial fibrosis as detected by LGE cMRI; (2) the agreement between echocardiographic and cMRI measurements of cardiac structure; and (3) whether serum concentrations of N-terminal pro hormone B-type natriuretic peptide (NT-proBNP) and cardiac troponin-T are associated with cMRI measurements. Methods: A cross-section of children with HCM from 9 tertiary-care pediatric heart centers in the U.S. and Canada were enrolled in this prospective NHLBI study of cardiac biomarkers in pediatric cardiomyopathy (ClinicalTrials.gov Identifier: NCT01873976). The median age of the 67 participants was 13.8 years (range 1-18 years). Core laboratories analyzed echocardiographic and cMRI measurements, and serum biomarker concentrations. Results: In 52 children with non-obstructive HCM undergoing cMRI, overall low levels of myocardial fibrosis with LGE >2% of left ventricular (LV) mass were detected in 37 (71%) (median %LGE, 9.0%; IQR: 6.0%, 13.0%; range, 0% to 57%). Echocardiographic and cMRI measurements of LV dimensions, LV mass, and interventricular septal thickness showed good agreement using the Bland-Altman method. NT-proBNP concentrations were strongly and positively associated with LV mass and interventricular septal thickness (P < .001), but not LGE. Conclusions: Low levels of myocardial fibrosis are common in pediatric patients with HCM seen at referral centers. Longitudinal studies of myocardial fibrosis and serum biomarkers are warranted to determine their predictive value for adverse outcomes in pediatric patients with HCM.Item Current Practices in Treating Cardiomyopathy and Heart Failure in Duchenne Muscular Dystrophy (DMD): Understanding Care Practices in Order to Optimize DMD Heart Failure Through ACTION(Springer Nature, 2022) Villa, Chet; Auerbach, Scott R.; Bansal, Neha; Birnbaum, Brian F.; Conway, Jennifer; Esteso, Paul; Gambetta, Katheryn; Hall, E. Kevin; Kaufman, Beth D.; Kirmani, Sonya; Lal, Ashwin K.; Martinez, Hugo R.; Nandi, Deipanjan; O’Connor, Matthew J.; Parent, John J.; Raucci, Frank J.; Shih, Renata; Shugh, Svetlana; Soslow, Jonathan H.; Tunuguntla, Hari; Wittlieb‑Weber, Carol A.; Kinnett, Kathi; Cripe, Linda; Pediatrics, School of MedicineCardiac disease has emerged as a leading cause of mortality in Duchenne muscular dystrophy in the current era. This survey sought to identify the diagnostic and therapeutic approach to DMD among pediatric cardiologists in Advanced Cardiac Therapies Improving Outcomes Network. Pediatric cardiology providers within ACTION (a multi-center pediatric heart failure learning network) were surveyed regarding their approaches to cardiac care in DMD. Thirty-one providers from 23 centers responded. Cardiac MRI and Holter monitoring are routinely obtained, but the frequency of use and indications for ordering these tests varied widely. Angiotensin converting enzyme inhibitor and aldosterone antagonist are generally initiated prior to onset of systolic dysfunction, while the indications for initiating beta-blocker therapy vary more widely. Seventeen (55%) providers report their center has placed an implantable cardioverter defibrillator in at least 1 DMD patient, while 11 providers (35%) would not place an ICD for primary prevention in a DMD patient. Twenty-three providers (74%) would consider placement of a ventricular assist device (VAD) as destination therapy (n = 23, 74%) and three providers (10%) would consider a VAD only as bridge to transplant. Five providers (16%) would not consider VAD at their institution. Cardiac diagnostic and therapeutic approaches vary among ACTION centers, with notable variation present regarding the use of advanced therapies (ICD and VAD). The network is currently working to harmonize medical practices and optimize clinical care in an era of rapidly evolving outcomes and cardiac/skeletal muscle therapies.Item The genetic architecture of pediatric cardiomyopathy(Elsevier, 2022) Ware, Stephanie M.; Bhatnagar, Surbhi; Dexheimer, Phillip J.; Wilkinson, James D.; Sridhar, Arthi; Fan, Xiao; Shen, Yufeng; Tariq, Muhammad; Schubert, Jeffrey A.; Colan, Steven D.; Shi, Ling; Canter, Charles E.; Hsu, Daphne T.; Bansal, Neha; Webber, Steven A.; Everitt, Melanie D.; Kantor, Paul F.; Rossano, Joseph W.; Pahl, Elfriede; Rusconi, Paolo; Lee, Teresa M.; Towbin, Jeffrey A.; Lal, Ashwin K.; Chung, Wendy K.; Miller, Erin M.; Aronow, Bruce; Martin, Lisa J.; Lipshultz, Steven E.; Pediatric Cardiomyopathy Registry Study Group; Pediatrics, School of MedicineTo understand the genetic contribution to primary pediatric cardiomyopathy, we performed exome sequencing in a large cohort of 528 children with cardiomyopathy. Using clinical interpretation guidelines and targeting genes implicated in cardiomyopathy, we identified a genetic cause in 32% of affected individuals. Cardiomyopathy sub-phenotypes differed by ancestry, age at diagnosis, and family history. Infants < 1 year were less likely to have a molecular diagnosis (p < 0.001). Using a discovery set of 1,703 candidate genes and informatic tools, we identified rare and damaging variants in 56% of affected individuals. We see an excess burden of damaging variants in affected individuals as compared to two independent control sets, 1000 Genomes Project (p < 0.001) and SPARK parental controls (p < 1 × 10-16). Cardiomyopathy variant burden remained enriched when stratified by ancestry, variant type, and sub-phenotype, emphasizing the importance of understanding the contribution of these factors to genetic architecture. Enrichment in this discovery candidate gene set suggests multigenic mechanisms underlie sub-phenotype-specific causes and presentations of cardiomyopathy. These results identify important information about the genetic architecture of pediatric cardiomyopathy and support recommendations for clinical genetic testing in children while illustrating differences in genetic architecture by age, ancestry, and sub-phenotype and providing rationale for larger studies to investigate multigenic contributions.