- Browse by Author
Browsing by Author "Bamlet, William R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Anticachectic regulator analysis reveals Perp-dependent antitumorigenic properties of 3-methyladenine in pancreatic cancer(American Society for Clinical Investigation, 2022-01-25) Dasgupta, Aneesha; Arneson-Wissink, Paige C.; Schmitt, Rebecca E.; Cho, Dong Seong; Ducharme, Alexandra M.; Hogenson, Tara L.; Krueger, Eugene W.; Bamlet, William R.; Zhang, Lizhi; Razidlo, Gina L.; Fernandez-Zapico, Martin E.; Doles, Jason D.; Anatomy, Cell Biology and Physiology, School of MedicineApproximately 80% of pancreatic cancer patients suffer from cachexia, and one-third die due to cachexia-related complications such as respiratory failure and cardiac arrest. Although there has been considerable research into cachexia mechanisms and interventions, there are, to date, no FDA-approved therapies. A major contributing factor for the lack of therapy options could be the failure of animal models to accurately recapitulate the human condition. In this study, we generated an aged model of pancreatic cancer cachexia to compare cachexia progression in young versus aged tumor-bearing mice. Comparative skeletal muscle transcriptome analyses identified 3-methyladenine (3-MA) as a candidate antiwasting compound. In vitro analyses confirmed antiwasting capacity, while in vivo analysis revealed potent antitumor effects. Transcriptome analyses of 3-MA-treated tumor cells implicated Perp as a 3-MA target gene. We subsequently (a) observed significantly higher expression of Perp in cancer cell lines compared with control cells, (b) noted a survival disadvantage associated with elevated Perp, and (c) found that 3-MA-associated Perp reduction inhibited tumor cell growth. Finally, we have provided in vivo evidence that survival benefits conferred by 3-MA administration are independent of its effect on tumor progression. Taken together, we report a mechanism linking 3-MA to Perp inhibition, and we further implicate Perp as a tumor-promoting factor in pancreatic cancer.Item Polycyclic Aromatic Hydrocarbons and Pancreatic Cancer: An Analysis of the Blood Biomarker, r-1,t-2,3,c-4-Tetrahydroxy-1,2,3,4-tetrahydrophenanthrene and Selected Metabolism Gene SNPs(MDPI, 2024-02-28) Nguyen, Sierra; Carlson, Heather; Yoder, Andrea; Bamlet, William R.; Oberg, Ann L.; Petersen, Gloria M.; Carmella, Steven G.; Hecht, Stephen S.; Jansen, Rick J.; Richard M. Fairbanks School of Public HealthExposure to polycyclic aromatic hydrocarbons (PAHs), byproducts of incomplete combustion, and their effects on the development of cancer are still being evaluated. Recent studies have analyzed the relationship between PAHs and tobacco or dietary intake in the form of processed foods and smoked/well-done meats. This study aims to assess the association of a blood biomarker and metabolite of PAHs, r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (PheT), dietary intake, selected metabolism SNPs, and pancreatic cancer. Demographics, food-frequency data, SNPs, treatment history, and levels of PheT in plasma were determined from 400 participants (202 cases and 198 controls) and evaluated based on pancreatic adenocarcinoma diagnosis. Demographic and dietary variables were selected based on previously published literature indicating association with pancreatic cancer. A multiple regression model combined the significant demographic and food items with SNPs. Final multivariate logistic regression significant factors (p-value < 0.05) associated with pancreatic cancer included: Type 2 Diabetes [OR = 6.26 (95% CI = 2.83, 14.46)], PheT [1.03 (1.02, 1.05)], very well-done red meat [0.90 (0.83, 0.96)], fruit/vegetable servings [1.35 (1.06, 1.73)], recessive (rs12203582) [4.11 (1.77, 9.91)], recessive (rs56679) [0.2 (0.06, 0.85)], overdominant (rs3784605) [3.14 (1.69, 6.01)], and overdominant (rs721430) [0.39 (0.19, 0.76)]. Of note, by design, the level of smoking did not differ between our cases and controls. This study does not provide strong evidence that PheT is a biomarker of pancreatic cancer susceptibility independent of dietary intake and select metabolism SNPs among a nonsmoking population.