- Browse by Author
Browsing by Author "Bae, Taeok"
Now showing 1 - 10 of 22
Results Per Page
Sort Options
Item The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus(Frontiers, 2017-05-15) Liu, Qian; Wang, Xing; Qin, Juanxiu; Cheng, Sen; Yeo, Won-Sik; He, Lei; Ma, Xiaowei; Liu, Xiaoyun; Li, Min; Bae, Taeok; Microbiology and Immunology, School of MedicineBiofilm causes hospital-associated infections on indwelling medical devices. In Staphylococcus aureus, Biofilm formation is controlled by intricately coordinated network of regulating systems, of which the ATP-dependent protease ClpP shows an inhibitory effect. Here, we demonstrate that the inhibitory effect of ClpP on biofilm formation is through Agr and the cell wall hydrolase Sle1. Biofilm formed by clpP mutant consists of proteins and extracellular DNA (eDNA). The increase of the protein was, at least in part, due to the reduced protease activity of the mutant, which was caused by the decreased activity of agr. On the other hand, the increase of eDNA was due to increased cell lysis caused by the higher level of Sle1. Indeed, as compared with wild type, the clpP mutant excreted an increased level of eDNA, and showed higher sensitivity to Triton-induced autolysis. The deletion of sle1 in the clpP mutant decreased the biofilm formation, the level of eDNA, and the Triton-induced autolysis to wild-type levels. Despite the increased biofilm formation capability, however, the clpP mutant showed significantly reduced virulence in a murine model of subcutaneous foreign body infection, indicating that the increased biofilm formation capability cannot compensate for the intrinsic functions of ClpP during infection.Item Comparative Genomic Analysis of a Panton–Valentine Leukocidin-Positive ST22 Community-Acquired Methicillin-Resistant Staphylococcus aureus from Pakistan(MDPI, 2022-04-08) Ullah, Nimat; Nasir, Samavi; Ishaq, Zaara; Anwer, Farha; Raza, Tanzeela; Rahman, Moazur; Alshammari, Abdulrahman; Alharbi, Metab; Bae, Taeok; Rahman, Abdur; Ali, Amjad; Microbiology and Immunology, School of MedicineStaphylococcus aureus (S. aureus) ST22 is considered a clinically important clone because an epidemic strain EMRSA-15 belongs to ST22, and several outbreaks of this clone have been documented worldwide. We performed genomic analysis of an S. aureus strain Lr2 ST22 from Pakistan and determined comparative analysis with other ST22 strains. The genomic data show that Lr2 belongs to spa-type t2986 and harbors staphylococcal cassette chromosome mec (SCCmec) type IVa(2B), one complete plasmid, and seven prophages or prophage-like elements. The strain harbors several prophage-associated virulence factors, including Panton-Valentine leukocidin (PVL) and toxic shock syndrome toxin (TSST). The single nucleotide polymorphism (SNPs)-based phylogenetic relationship inferred from whole genome and core genome revealed that strain Lr2 exhibits the nearest identities to a South African community-acquired methicillin-resistant S. aureus (CA-MRSA) ST22 strain and makes a separate clade with an Indian CA-MRSA ST22 strain. Although most ST22 strains carry blaZ, mecA, and mutations in gyrA, the Lr2 strain does not have the blaZ gene but, unlike other ST22 strains, carries the antibiotic resistance genes erm(C) and aac(6')-Ie-aph(2″)-Ia. Among ST22 strains analyzed, only the strain Lr2 possesses both PVL and TSST genes. The functional annotation of genes unique to Lr2 revealed that mobilome is the third-largest Cluster of Orthologous Genes (COGs) category, which encodes genes associated with prophages and transposons. This possibly makes methicillin-resistant S. aureus (MRSA) Lr2 ST22 strain highly virulent, and this study would improve the knowledge of MRSA ST22 strains in Pakistan. However, further studies are needed on a large collection of MRSA to comprehend the genomic epidemiology and evolution of this clone in Pakistan.Item A Critical Role for HlgA in Staphylococcus aureus Pathogenesis Revealed by A Switch in the SaeRS Two-Component Regulatory System(MDPI, 2018-09-18) Venkatasubramaniam, Arundhathi; Kanipakala, Tulasikumari; Ganjbaksh, Nader; Mehr, Rana; Mukherjee, Ipsita; Krishnan, Subramaniam; Bae, Taeok; Aman, M. Javad; Adhikari, Rajan P.; Microbiology and Immunology, School of MedicineCytolytic pore-forming toxins including alpha hemolysin (Hla) and bicomponent leukotoxins play an important role in the pathogenesis of Staphylococcus aureus. These toxins kill the polymorphonuclear phagocytes (PMNs), disrupt epithelial and endothelial barriers, and lyse erythrocytes to provide iron for bacterial growth. The expression of these toxins is regulated by the two-component sensing systems Sae and Agr. Here, we report that a point mutation (L18P) in SaeS, the histidine kinase sensor of the Sae system, renders the S. aureus Newman hemolytic activity fully independent of Hla and drastically increases the PMN lytic activity. Furthermore, this Hla-independent activity, unlike Hla itself, can lyse human erythrocytes. The Hla-independent activity towards human erythrocytes was also evident in USA300, however, under strict agr control. Gene knockout studies revealed that this Hla-independent Sae-regulated activity was entirely dependent on gamma hemolysin A subunit (HlgA). In contrast, hemolytic activity of Newman towards human erythrocytes from HlgAB resistant donors was completely dependent on agr. The culture supernatant from Newman S. aureus could be neutralized by antisera against two vaccine candidates based on LukS and LukF subunits of Panton-Valentine leukocidin but not by an anti-Hla neutralizing antibody. These findings display the complex involvement of Sae and Agr systems in regulating the virulence of S. aureus and have important implications for vaccine and immunotherapeutics development for S. aureus disease in humans.Item Development of Combination Vaccine Conferring Optimal Protection against Six Pore-Forming Toxins of Staphylococcus aureus(American Society for Microbiology, 2021) Zhang, QingFeng; Jiang, TingTing; Mao, Xinrui; Kim, Jae Deog; Ahn, Dong Ho; Jung, Yunjin; Bae, Taeok; Lee, Bok Luel; Microbiology and Immunology, School of MedicineIn the Gram-positive pathogen Staphylococcus aureus, pore-forming toxins (PFTs), such as leukocidins and hemolysins, play prominent roles in staphylococcal pathogenesis by killing host immune cells and red blood cells (RBCs). However, it remains unknown which combination of toxin antigens would induce the broadest protective immune response against those toxins. In this study, by targeting six major staphylococcal PFTs (i.e., gamma-hemolysin AB [HlgAB], gamma-hemolysin CB [HlgCB], leukocidin AB [LukAB], leukocidin ED [LukED], Panton-Valentine leukocidin [LukSF-PV], and alpha-hemolysin [Hla]), we generated 10 recombinant toxins or toxin subunits, 3 toxoids, and their rabbit antibodies. Using the cytolytic assay for RBCs and polymorphonuclear cells (PMNs), we determined the best combination of toxin antibodies conferring the broadest protection against those staphylococcal PFTs. Although anti-HlgA IgG (HlgA-IgG) showed low cross-reactivity to other toxin components, it was essential to protect rabbit and human RBCs and human PMNs. For the protection of rabbit RBCs, HlaH35L toxoid-IgG was also required, whereas for human PMNs, LukS-IgG and LukAE323AB-IgG were essential too. When the toxin/toxoid antigens HlgA, LukS-PV, HlaH35L, and LukAE323AB were used to immunize rabbits, they increased rabbit survival; however, they did not block staphylococcal abscess formation in kidneys. Based on these results, we proposed that the combination of HlgA, LukS, HlaH35L, and LukAE323AB is the optimal vaccine component to protect human RBCs and PMNs from staphylococcal PFTs. We also concluded that a successful S. aureus vaccine requires not only those toxin antigens but also other antigens that can induce immune responses blocking staphylococcal colonization.Item Diabetes mellitus promotes the nasal colonization of high virulent Staphylococcus aureus through the regulation of SaeRS two-component system(Taylor & Francis, 2023) Wang, Qichen; Nurxat, Nadira; Zhang, Lei; Liu, Yao; Wang, Yanan; Zhang, Lei; Zhao, Na; Dai, Yingxin; Jian, Ying; He, Lei; Wang, Hua; Bae, Taeok; Li, Min; Liu, Qian; Microbiology and Immunology, School of MedicineDiabetic foot infections are a common complication of diabetes. Staphylococcus aureus is frequently isolated from diabetic foot infections and commonly colonizes human nares. According to the study, the nasal microbiome analysis revealed that diabetic patients had a significantly altered nasal microbial composition and diversity. Typically, the fasting blood glucose (FBG) level had an impact on the abundance and sequence type (ST) of S. aureus in diabetic patients. We observed that highly virulent S. aureus ST7 strains were more frequently colonized in diabetic patients, especially those with poorly controlled FBG, while ST59 was dominant in healthy individuals. S. aureus ST7 strains were more resistant to human antimicrobial peptides and formed stronger biofilms than ST59 strains. Critically, S. aureus ST7 strains displayed higher virulence compared to ST59 strains in vivo. The dominance of S. aureus ST7 strains in hyperglycemic environment is due to the higher activity of the SaeRS two-component system (TCS). S. aureus ST7 strains outcompeted ST59 both in vitro, and in nasal colonization model in diabetic mice, which was abolished by the deletion of the SaeRS TCS. Our data indicated that highly virulent S. aureus strains preferentially colonize diabetic patients with poorly controlled FBG through SaeRS TCS. Detection of S. aureus colonization and elimination of colonizing S. aureus are critical in the care of diabetic patients with high FBG.Item The FDA-approved anti-cancer drugs, streptozotocin and floxuridine, reduce the virulence of Staphylococcus aureus(Nature Publishing Group, 2018-02-06) Yeo, Won-Sik; Arya, Rekha; Kim, Kyeong Kyu; Jeong, Hyunyoung; Cho, Kyu Hong; Bae, Taeok; Microbiology and Immunology, School of MedicineIn Staphylococcus aureus, an important Gram-positive human pathogen, the SaeRS two-component system is essential for the virulence and a good target for the development of anti-virulence drugs. In this study, we screened 12,200 small molecules for Sae inhibitors and identified two anti-cancer drugs, streptozotocin (STZ) and floxuridine (FU), as lead candidates for anti-virulence drug development against staphylococcal infections. As compared with STZ, FU was more efficient in repressing Sae-regulated promoters and protecting human neutrophils from S. aureus-mediated killing. FU inhibited S. aureus growth effectively whereas STZ did not. Intriguingly, RNA-seq analysis suggests that both compounds inhibit other virulence-regulatory systems such as Agr, ArlRS, and SarA more efficiently than they inhibit the Sae system. Both compounds induced prophages from S. aureus, indicating that they cause DNA damages. Surprisingly, a single administration of the drugs was sufficient to protect mice from staphylococcal intraperitoneal infection. Both compounds showed in vivo efficacy in a murine model of blood infection too. Finally, at the experimental dosage, neither compound showed any noticeable side effects on blood glucose level or blood cell counts. Based on these results, we concluded that STZ and FU are promising candidates for anti-virulence drug development against S. aureus infection.Item Ftsh Sensitizes Methicillin-Resistant Staphylococcus aureus to -Lactam Antibiotics by Degrading YpfP, a Lipoteichoic Acid Synthesis Enzyme(MDPI, 2021-10-01) Yeo, Won-Sik; Jeong, Bohyun; Ullah, Nimat; Shah, Majid Ali; Ali, Amjad; Kim, Kyeong Kyu; Bae, Taeok; Microbiology and Immunology, School of MedicineIn the Gram-positive pathogen Staphylococcus aureus, FtsH, a membrane-bound metalloprotease, plays a critical role in bacterial virulence and stress resistance. This protease is also known to sensitize methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics; however, the molecular mechanism is not known. Here, by the analysis of FtsH substrate mutants, we found that FtsH sensitizes MRSA specifically to β-lactams by degrading YpfP, the enzyme synthesizing the anchor molecule for lipoteichoic acid (LTA). Both the overexpression of FtsH and the disruption of ypfP-sensitized MRSA to β-lactams were observed. The knockout mutation in ftsH and ypfP increased the thickness of the cell wall. The β-lactam sensitization coincided with the production of aberrantly large LTA molecules. The combination of three mutations in the rpoC, vraB, and SAUSA300_2133 genes blocked the β-lactam-sensitizing effect of FtsH. Murine infection with the ypfP mutant could be treated by oxacillin, a β-lactam antibiotic ineffective against MRSA; however, the effective concentration of oxacillin differed depending on the S. aureus strain. Our study demonstrated that the β-lactam sensitizing effect of FtsH is due to its digestion of YpfP. It also suggests that the larger LTA molecules are responsible for the β-lactam sensitization phenotype, and YpfP is a viable target for developing novel anti-MRSA drugs.Item Genomic Investigation of Methicillin-Resistant Staphylococcus aureus ST113 Strains Isolated from Tertiary Care Hospitals in Pakistan(MDPI, 2021-09-17) Ullah, Nimat; Dar, Hamza Arshad; Naz, Kanwal; Andleeb, Saadia; Rahman, Abdur; Saeed, Muhammad Tariq; Hanan, Fazal; Bae, Taeok; Ali, Amjad; Microbiology and Immunology, School of MedicineMethicillin-resistant Staphylococcus aureus (MRSA) is a multi-drug resistant and opportunistic pathogen. The emergence of new clones of MRSA in both healthcare settings and the community warrants serious attention and epidemiological surveillance. However, epidemiological data of MRSA isolates from Pakistan are limited. We performed a whole-genome-based comparative analysis of two (P10 and R46) MRSA strains isolated from two provinces of Pakistan to understand the genetic diversity, sequence type (ST), and distribution of virulence and antibiotic-resistance genes. The strains belong to ST113 and harbor the SCCmec type IV encoding mecA gene. Both the strains contain two plasmids, and three and two complete prophage sequences are present in P10 and R46, respectively. The specific antibiotic resistance determinants in P10 include two aminoglycoside-resistance genes, aph(3')-IIIa and aad(6), a streptothrin-resistance gene sat-4, a tetracycline-resistance gene tet(K), a mupirocin-resistance gene mupA, a point mutation in fusA conferring resistance to fusidic acid, and in strain R46 a specific plasmid associated gene ant(4')-Ib. The strains harbor many virulence factors common to MRSA. However, no Panton-Valentine leucocidin (lukF-PV/lukS-PV) or toxic shock syndrome toxin (tsst) genes were detected in any of the genomes. The phylogenetic relationship of P10 and R46 with other prevailing MRSA strains suggests that ST113 strains are closely related to ST8 strains and ST113 strains are a single-locus variant of ST8. These findings provide important information concerning the emerging MRSA clone ST113 in Pakistan and the sequenced strains can be used as reference strains for the comparative genomic analysis of other MRSA strains in Pakistan and ST113 strains globally.Item In silico designed Staphylococcus aureus B-cell multi-epitope vaccine did not elicit antibodies against target antigens suggesting multi-domain approach(Elsevier, 2022) Ullah, Nimat; Anwer, Farha; Ishaq, Zaara; Siddique, Abubakar; Shah, Majid Ali; Rahman, Moazur; Rahman, Abdur; Mao, Xinrui; Jiang, TingTing; Lee, Bok Luel; Bae, Taeok; Ali, Amjad; Microbiology and Immunology, School of MedicineThe vaccine development strategies have evolved from using an entire organism as an immunogen to a single antigen and further towards an epitope. Since an epitope is a relatively tiny and immunologically relevant part of an antigen, it has the potential to stimulate more robust and specific immune responses while causing minimal adverse effects. As a result, the recent focus of vaccine development has been to develop multi-epitope vaccines that can target multiple virulence mechanisms. Accordingly, we designed multi-epitope vaccine candidates B (multi-B-cell epitope immunogen) and CTB-B (an adjuvant - cholera toxin subunit B (CTB) - attached to immunogen B) against S. aureus by employing immunoinformatics approaches. The designed vaccines are composed of B-cell epitope segments (20-mer) of the eight well-characterized S. aureus virulence factors, namely ClfB, FnbpA, Hla, IsdA, IsdB, LukE, SdrD, and SdrE connected in series. The designed vaccines were expressed, purified, and administered to C57BL/6 mice with Freund adjuvant to evaluate the immunogenicity and protective efficacy. The results revealed that the immunized mice showed high IgG titers for the immunogen, and the antibody titers increased significantly following the second immunization. However, the generated antibodies did not protect the mice from infection. The interaction of anti-B antibodies with source virulence factors showed that the generated antibodies have no binding affinity with any of the corresponding virulence factors. Our results demonstrate the limitation of the in silico designed B-cell multi-epitope vaccine and suggest that a protein domain carrying both linear and conformational B-cell epitopes might be a better choice for developing an effective multi-epitope vaccine against S. aureus.Item In Staphylococcus aureus, the Particulate State of the Cell Envelope Is Required for the Efficient Induction of Host Defense Responses(American Society for Microbiology, 2019-11-18) Kim, ByungHyun; Jiang, TingTing; Bae, Jun-Hyun; Yun, Hye Su; Jang, Seong Han; Kim, Jung Hyun; Kim, Jae Deog; Hur, Jin-Hoe; Shibata, Kensuke; Kurokawa, Kenji; Jung, Yunjin; Peschel, Andreas; Bae, Taeok; Lee, Bok Luel; Microbiology and Immunology, School of MedicineUpon microbial infection, host immune cells recognize bacterial cell envelope components through cognate receptors. Although bacterial cell envelope components function as innate immune molecules, the role of the physical state of the bacterial cell envelope (i.e., particulate versus soluble) in host immune activation has not been clearly defined. Here, using two different forms of the staphylococcal cell envelope of Staphylococcus aureus RN4220 and USA300 LAC strains, we provide biochemical and immunological evidence that the particulate state is required for the effective activation of host innate immune responses. In a murine model of peritoneal infection, the particulate form of the staphylococcal cell envelope (PCE) induced the production of chemokine (C-X-C motif) ligand 1 (CXCL1) and CC chemokine ligand 2 (CCL2), the chemotactic cytokines for neutrophils and monocytes, respectively, resulting in a strong influx of the phagocytes into the peritoneal cavity. In contrast, compared with PCE, the soluble form of cell envelope (SCE), which was derived from PCE by treatment with cell wall-hydrolyzing enzymes, showed minimal activity. PCE also induced the secretion of calprotectin (myeloid-related protein 8/14 [MRP8/14] complex), a phagocyte-derived antimicrobial protein, into the peritoneal cavity at a much higher level than did SCE. The injected PCE particles were phagocytosed by the infiltrated neutrophils and monocytes and then delivered to mediastinal draining lymph nodes. More importantly, intraperitoneally (i.p.) injected PCE efficiently protected mice from S. aureus infection, which was abolished by the depletion of either monocytes/macrophages or neutrophils. This study demonstrated that the physical state of bacterial cells is a critical factor for efficient host immune activation and the protection of hosts from staphylococcal infections.
- «
- 1 (current)
- 2
- 3
- »