- Browse by Author
Browsing by Author "Badner, Judith A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Efficient region-based test strategy uncovers genetic risk factors for functional outcome in bipolar disorder(Elsevier, 2019-01-01) Budde, Monika; Friedrichs, Stefanie; Alliey-Rodriguez, Ney; Ament, Seth; Badner, Judith A.; Berrettini, Wade H.; Bloss, Cinnamon S.; Byerley, William; Cichon, Sven; Comes, Ashley L.; Coryell, William; Craig, David W.; Degenhardt, Franziska; Edenberg, Howard J.; Foroud, Tatiana; Forstner, Andreas J.; Frank, Josef; Gershon, Elliot S.; Goes, Fernando S.; Greenwood, Tiffany A.; Guo, Yiran; Hipolito, Maria; Hood, Leroy; Keating, Brendan J.; Koller, Daniel L.; Lawson, William B.; Liu, Chunyu; Mahon, Pamela B.; McInnis, Melvin G.; McMahon, Francis J.; Meier, Sandra M.; Mühleisen, Thomas W.; Murray, Sarah S.; Nievergelt, Caroline M.; Nurnberger, John I.; Nwulia, Evaristus A.; Potash, James B.; Quarless, Danjuma; Rice, John; Roach, Jared C.; Scheftner, William A.; Schork, Nicholas J.; Shekhtman, Tatyana; Shilling, Paul D.; Smith, Erin N.; Streit, Fabian; Strohmaier, Jana; Szelinger, Szabolcs; Treutlein, Jens; Witt, Stephanie H.; Zandi, Peter P.; Zhang, Peng; Zöllner, Sebastian; Bickeböller, Heike; Falkai, Peter G.; Kelsoe, John R.; Nöthen, Markus M.; Rietschel, Marcella; Schulze, Thomas G.; Malzahn, Dörthe; Biochemistry and Molecular Biology, School of MedicineGenome-wide association studies of case-control status have advanced the understanding of the genetic basis of psychiatric disorders. Further progress may be gained by increasing sample size but also by new analysis strategies that advance the exploitation of existing data, especially for clinically important quantitative phenotypes. The functionally-informed efficient region-based test strategy (FIERS) introduced herein uses prior knowledge on biological function and dependence of genotypes within a powerful statistical framework with improved sensitivity and specificity for detecting consistent genetic effects across studies. As proof of concept, FIERS was used for the first genome-wide single nucleotide polymorphism (SNP)-based investigation on bipolar disorder (BD) that focuses on an important aspect of disease course, the functional outcome. FIERS identified a significantly associated locus on chromosome 15 (hg38: chr15:48965004 – 49464789 bp) with consistent effect strength between two independent studies (GAIN/TGen: European Americans, BOMA: Germans; n = 1592 BD patients in total). Protective and risk haplotypes were found on the most strongly associated SNPs. They contain a CTCF binding site (rs586758); CTCF sites are known to regulate sets of genes within a chromatin domain. The rs586758 – rs2086256 – rs1904317 haplotype is located in the promoter flanking region of the COPS2 gene, close to microRNA4716, and the EID1, SHC4, DTWD1 genes as plausible biological candidates. While implication with BD is novel, COPS2, EID1, and SHC4 are known to be relevant for neuronal differentiation and function and DTWD1 for psychopharmacological side effects. The test strategy FIERS that enabled this discovery is equally applicable for tag SNPs and sequence data.Item Genome-wide parametric linkage analyses of 644 bipolar pedigrees suggest susceptibility loci at chromosomes 16 and 20(Ovid Technologies (Wolters Kluwer) - Lippincott Williams & Wilkins, 2008-08) Ross, Jessica; Berrettini, Wade; Coryell, William; Gershon, Elliot S.; Badner, Judith A.; Kelsoe, John R.; McInnis, Melvin G.; McMahon, Francis J.; Murphy, Dennis L.; Nurnberger, John I.; Foroud, Tatiana; Rice, John P.; Scheftner, William B.; Zandi, Peter; Edenberg, Howard; Byerley, William; Department of Psychiatry, IU School of MedicineOBJECTIVE: Our aim is to map chromosomal regions that harbor loci that increase susceptibility to bipolar disorder. METHODS: We analyzed 644 bipolar families ascertained by the National Institute of Mental Health Human Genetics Initiative for bipolar disorder. The families have been genotyped with microsatellite loci spaced every approximately 10 cM or less across the genome. Earlier analyses of these pedigrees have been limited to nonparametric (model-free) methods and thus, information from unaffected subjects with genotypes was not considered. In this study, we used parametric analyses assuming dominant and recessive transmission and specifying a maximum penetrance of 70%, so that information from unaffecteds could be weighed in the linkage analyses. As in previous linkage analyses of these pedigrees, we analyzed three diagnostic categories: model 1 included only bipolar I and schizoaffective, bipolar cases (1565 patients of whom approximately 4% were schizoaffective, bipolar); model 2 included all individuals in model 1 plus bipolar II patients (1764 total individuals); and model 3 included all individuals in model 2 with the addition of patients with recurrent major depressive disorder (2046 total persons). RESULTS: Assuming dominant inheritance the highest genome-wide pair-wise logarithm of the odds (LOD) score was 3.2 with D16S749 using model 2 patients. Multipoint analyses of this region yielded a maximum LOD score of 4.91. Under recessive transmission a number of chromosome 20 markers were positive and multipoint analyses of the area gave a maximum LOD of 3.0 with model 2 cases. CONCLUSION: The chromosome 16p and 20 regions have been implicated by some studies and the data reported herein provide additional suggestive evidence of bipolar susceptibility genes in these regions.