- Browse by Author
Browsing by Author "Bacallao, Robert"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Hydrodynamic delivery for prevention of acute kidney injury(2015) Zhang, Shijun; Atkinson, Simon; Bacallao, Robert; Blazer-Yost, BonnieThe young field of gene therapy offers the promises of significant progress towards the treatment of many different types of human diseases. Gene therapy has been proposed as an innovative way to treat Acute Kidney Injury (AKI). Through proteomic analysis, the upregulation of two enzymes, IDH2 and SULT1C2, within the mitochondrial fraction has been identified following ischemic preconditioning, a treatment by which rat kidneys are protected from ischemia. Using the hydrodynamic fluid gene delivery technique, we were able to upregulate the expression of IDH2 and SULT1C2 in the kidney. We found that the delivery of IDH2 plasmid through hydrodynamic fluid delivery to the kidney resulted in increased mitochondrial oxygen respiration compared with injured kidneys without gene delivery. We also found that renal ischemic preconditioning altered the membrane fluidity of mitochondria. In conclusion, our study supports the idea that upregulated expression of IDH2 in mitochondria can protect the kidney against AKI, while the protective function of upregulated SULT1C2 needs to be further studied.Item Recent Activities in the Center for Membrane Biosciences(Office of the Vice Chancellor for Research, 2011-04-08) Blazer-Yost, Bonnie L.; Randall, Stephen; Minto, Robert; Birch, Garrison; Haydon, Julie; Bacallao, Robert; Gattone, Vincent; Blacklock, BrendaThe Center for Membrane Biosciences (CMB) is active in facilitating collaborative research among center members and other IUPUI community members. A number of seed grants have been made and the results from two will be presented. Recent major funding from the NSF supports a CMB-centered program that promotes intensive undergraduate research opportunities. Project 1: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the slow growth of fluid-filled cysts in the kidney tubules and liver bile ducts. We identified LPA (lysophosphatic acid) as a component of cyst fluid that stimulates secretory Cl- and compensatory water flux into cysts through binding of receptors on the basolateral membrane of renal cells. LPA concentrations measured in ADPKD cyst fluid and in normal serum are sufficient to maximally stimulate ion transport. Thus, cyst fluid seepage and/or leakage of vascular LPA into the interstitial space are capable of stimulating secretion from epithelial cells resulting in cyst enlargement. Project 2: Upon the recent acquisition of Center-supported high-resolution mass spectrometers at IUPUI, methods for the analysis of lipid and protein samples to support nascent research endeavors within the CMB are being developed. Identification and quantification of sphingolipids in biological samples as well as other lipidomic experiments will be presented. Project 3: The IUPUI URM Immersion in Interdisciplinary Research in Biological Signaling program targets underrepresented minorities in the biological sciences, and through early and sustained undergraduate research experiences that are intensely mentored at multiple levels, aims to increase the number of underrepresented minorities achieving graduate degrees in the Biological Sciences. The first cohort will begin research in the program during the summer of 2011 and are currently in the selection process.Item Studies on hydrodynamic delivery as a treatment for acute kidney injury(2017) Kolb, Alexander; Atkinson, Simon; Bacallao, Robert; Basile, David; Dai, Guoli; Szymanski, DanielHydrodynamic delivery is a powerful tool that allows delivery of macromolecules to the kidney culminating in gene expression. This finding is important in the fight against kidney disease. Current therapy for kidney injury, specifically acute kidney injury, is lacking. Supportive care in the form of IV fluids and medications aimed at restoring Glomerular Filtration Rate (GFR) and urine output are currently used. However, even with these treatments, prognoses of patients diagnosed with this disease remains poor. We believe that hydrodynamic delivery provides a mechanism that can be used to reverse and prevent AKI. Hydrodynamic delivery following ischemic injuries leads to reductions in serum creatinine and infiltrating mononuclear cells, as well as increased renal blood flow and survival. These changes are due to reductions in vascular congestion and inflammation typically seen following injury. To determine the underlying mechanisms of gene delivery preventing AKI, we used candidate genes identified in a proteomic screen on kidneys that recovered from AKI. We selected Isocitrate Dehydrogenase II (IDH2) and Sulfotransferase 1C2 (SULT1C2) for study and found that delivery prior to injury prevents serum creatinine increase and reduces cell death. We found that gene delivery of IDH2 prevents a glycolytic shift typically seen following ischemic injuries. The mechanism underlying the prevention of this shift are seen in increased ATP stores and spare respiratory capacity allowing the cell to remain in an oxidative state. Additionally, we show that SULT1C2 post-translationally modifies the mitochondria membrane, increasing oxidative phosphorylation providing the cell with additional energy needed in times of oxidative stress. These candidate genes allow cells to remain in an oxidative state preventing the activation of cell death pathways typically activated following injury, thereby preserving normal kidney function.Item Testing Therapeutic Candidates in a Mouse Model of Polycystic Kidney Disease(Office of the Vice Chancellor for Research, 2016-04-08) McConkey, Shannon; Yang, Jenny; Bacallao, Robert; Berbari, Nicolas F.Approximately 1 in 500 middle aged people in the United States will be diagnosed with Polycystic Kidney Disease (PKD), an inherited genetic disorder that results in extreme cysts on the kidneys. PKD eventually leads to end-stage kidney failure and current treatments are limited to dialysis or transplantation. Thus, a pharmacological approach to prevent, delay, or slow the progression of PKD would revolutionize treatment and improve mortality. Interestingly, many proteins associated with PKD have been found in and around the primary cilia of renal epithelial cells. Cilia are small microtubule-based cellular appendages found on the surface of most cell types in the human body and are broadly classified as either “motile” or “primary” (immotile). Primary cilia are known to be mechano- and environmental sensors, and play a critical role in cell-to-cell communication. The aim of this proposed research is to use potential therapeutics identified in silico and in vitro in animal models of PKD to determine if the compound can delay or prevent cystogenesis. Here we test Sildenafil citrate (Viagra) in an animal model of rapidly progressing cyst formation for its ability to ameliorate the phenotype. Further research directed at understanding the cilia, cell-cycle, and cilia-mediated signalling activity will hopefully provide important insights into the mechanisms of renal cyst pathogenesis and lead to better approaches for therapeutic intervention for PKD.