- Browse by Author
Browsing by Author "Avin, Keith"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Beet-ing Muscle Dysfunction and Exercise Intolerance in Pulmonary Hypertension(2019-10) Long, Gary Marshall; Coggan, Andrew R.; Brown, Mary Beth; Lahm, Tim; Avin, Keith; Arnold, BrentBackground: Pulmonary Hypertension (PH) is a devastating disease characterized by pulmonary arterial remodeling, right ventricular dysfunction and ultimately right heart failure. Increased emphasis has been given to skeletal muscle dysfunction in PH, and to its implication in the severe exercise intolerance that is a hallmark of the condition. In this dissertation, skeletal muscle blood flow was measured via the microsphere technique at rest and during exercise (Aim 1), with an acute dose of dietary nitrate via beetroot juice (BRJ) gavage used to determine if supplementation could improve muscle blood flow and alter energetics (Aim 2). VO2max, voluntary running and grip strength tests were used to determine the effect of disease on performance, and to test for an ergogenic effect of BRJ vs. placebo (PL) in healthy and PH rats (Aim 3). Methods: A prospective, randomized, counterbalanced, placebo-controlled trial was used to examine the aforementioned aims across four groups; PH rats (induced with monocrotaline, MCT, 60mg/kg, s.q., 4 weeks) supplemented with BRJ (MCT BRJ, n=9); PH rats supplemented with placebo (MCT PL, n=9); healthy control rats (vehicle, s.q.) supplemented with BRJ (CON BRJ, n=8); healthy control rats supplemented with placebo (CON PL, n=9). Results: Monocrotaline induced a severe PH phenotype evidenced by increased RV wall thickness, RV hypertrophy, RVSP and reduced cardiac output and stroke volume compared to controls (p=<0.001). MCT rats demonstrated lower muscle blood flow at rest, and more prominently during exercise compared to controls (p=0.007-0.047), regardless of supplementation. MCT rats displayed a greater reliance on anaerobic metabolism, demonstrated by increased blood lactate accumulation (p=<0.001), and this was significantly related to reduced blood flow during exercise (r=-0.5879, p=0.001). BRJ supplementation resulted in increased plasma nitrate and nitrite compared to PL (p=<0.001), but at the skeletal muscle level, only nitrate was increased after BRJ. BRJ did not have a significant effect on blood flow, with no improvement during exercise shown vs. PL. Similarly, BRJ did not significantly improve exercise function in MCT or CON rats. Conclusion: MCT rats demonstrated a reduction in muscle blood flow, with BRJ supplementation not resulting in improved flow or exercise performance.Item Electroacupuncture Promotes Central Nervous System-Dependent Release of Mesenchymal Stem Cells(Wiley, 2017-05) Salazar, Tatiana E.; Richardson, Matthew R.; Beli, Eleni; Ripsch, Matthew S.; George, John; Kim, Youngsook; Duan, Yaqian; Moldovan, Leni; Yan, Yuanqing; Bhatwadekar, Ashay; Jadhav, Vaishnavi; Smith, Jared A.; McGorray, Susan; Bertone, Alicia L.; Traktuev, Dmitri O.; March, Keith L.; Colon-Perez, Luis M.; Avin, Keith; Sims, Emily; Mund, Julie A.; Case, Jamie; Deng, Shaolin; Kim, Min Su; McDavitt, Bruce; Boulton, Michael E.; Thinschmidt, Jeffrey; Calzi, Sergio Li; Fitz, Stephanie D.; Fuchs, Robyn K.; Warden, Stuart J.; McKinley, Todd; Shekhar, Anantha; Febo, Marcelo; Johnson, Phillip L.; Chang, Lung Ji; Gao, Zhanguo; Kolonin, Mikhail G.; Lai, Song; Ma, Jinfeng; Dong, Xinzhong; White, Fletcher A.; Xie, Huisheng; Yoder, Mervin C.; Grant, Maria B.; Ophthalmology, School of MedicineElectroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief.Item N-acetylcysteine (NAC), an anti-oxidant, does not improve bone mechanical properties in a rat model of progressive chronic kidney disease-mineral bone disorder(Public Library of Science, 2020) Allen, Matthew R.; Wallace, Joseph; McNerney, Erin; Nyman, Jeffry; Avin, Keith; Chen, Neal; Moe, Sharon; Anatomy and Cell Biology, School of MedicineIndividuals with chronic kidney disease have elevated levels of oxidative stress and are at a significantly higher risk of skeletal fracture. Advanced glycation end products (AGEs), which accumulate in bone and compromise mechanical properties, are known to be driven in part by oxidative stress. The goal of this study was to study effects of N-acetylcysteine (NAC) on reducing oxidative stress and improving various bone parameters, most specifically mechanical properties, in an animal model of progressive CKD. Male Cy/+ (CKD) rats and unaffected littermates were untreated (controls) or treated with NAC (80 mg/kg, IP) from 30 to 35 weeks of age. Endpoint measures included serum biochemistries, assessments of systemic oxidative stress, bone morphology, and mechanical properties, and AGE levels in the bone. CKD rats had the expected phenotype that included low kidney function, elevated parathyroid hormone, higher cortical porosity, and compromised mechanical properties. NAC treatment had mixed effects on oxidative stress markers, significantly reducing TBARS (a measure of lipid peroxidation) while not affecting 8-OHdG (a marker of DNA oxidation) levels. AGE levels in the bone were elevated in CKD animals and were reduced with NAC although this did not translate to a benefit in bone mechanical properties. In conclusion, NAC failed to significantly improve bone architecture/geometry/mechanical properties in our rat model of progressive CKD.