ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Atwani, Rula"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Correction: Integrin-linked kinase-frizzled 7 interaction maintains cancer stem cells to drive platinum resistance in ovarian cancer
    (Springer Nature, 2024-06-22) Atwani, Rula; Nagare, Rohit Pravin; Rogers, Amber; Prasad, Mayuri; Lazar, Virginie; Sandusky, George; Tong, Yan; Pin, Fabrizio; Condello, Salvatore; Obstetrics and Gynecology, School of Medicine
    Correction: J Exp Clin Cancer Res 43, 156 (2024) 10.1186/s13046-024-03083-y Following publication of the original article [1], the authors identified an error in the author name of Rohit Pravin Nagare. The incorrect author name is: Rohit Nagare The correct author name is: Rohit Pravin Nagare The author group has been updated above and the original article [1] has been corrected.
  • Loading...
    Thumbnail Image
    Item
    Integrin-linked kinase-frizzled 7 interaction maintains cancer stem cells to drive platinum resistance in ovarian cancer
    (Springer Nature, 2024-06-01) Atwani, Rula; Nagare, Rohit Pravin; Rogers, Amber; Prasad, Mayuri; Lazar, Virginie; Sandusky, George; Tong, Yan; Pin, Fabrizio; Condello, Salvatore; Obstetrics and Gynecology, School of Medicine
    Background: Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. Methods: TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. Results: In response to increased fibronectin secretion and integrin β1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and correlated with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/β-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. Conclusions: This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may lead to new therapeutic approaches to eradicate OCSCs and improve patient outcomes.
  • Loading...
    Thumbnail Image
    Item
    Integrin-linked kinase-frizzled 7 interaction maintains cancer stem cells to drive platinum resistance in ovarian cancer
    (Research Square, 2024-03-13) Atwani, Rula; Rogers, Amber; Nagare, Rohit; Prasad, Mayuri; Lazar, Virginie; Sandusky, George; Pin, Fabrizio; Condello, Salvatore; Obstetrics and Gynecology, School of Medicine
    Background: Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. Methods: TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. Results: In response to increased fibronectin (FN) secretion and integrin β1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and showed a strong correlation with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/β-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. Conclusions: This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may represent a new therapeutic strategy to eradicate OCSCs and improve patient outcomes.
  • Loading...
    Thumbnail Image
    Item
    Tissue transglutaminase activates integrin-linked kinase and β-catenin in ovarian cancer
    (American Society for Biochemistry and Molecular Biology, 2022) Condello, Salvatore; Prasad, Mayuri; Atwani, Rula; Matei, Daniela; Obstetrics and Gynecology, School of Medicine
    Ovarian cancer (OC) is the most lethal gynecological cancer. OC cells have high proliferative capacity, are invasive, resist apoptosis, and tumors often display rearrangement of extracellular matrix (ECM) components, contributing to accelerated tumor progression. The multifunctional protein tissue transglutaminase (TG2) is known to be secreted in the tumor microenvironment, where it interacts with fibronectin (FN) and the cell surface receptor integrin β1. However, the mechanistic role of TG2 in cancer cell proliferation is unknown. Here, we demonstrate that TG2 directly interacts with and facilitates the phosphorylation and activation of the integrin effector protein integrin-linked kinase (ILK) at Ser246. We show that TG2 and p-Ser246-ILK form a complex that is detectable in patient-derived OC primary cells grown on FN-coated slides. In addition, we show that coexpression of TGM2 and ILK correlates with poor clinical outcome. Mechanistically, we demonstrate that TG2-mediated ILK activation causes phosphorylation of glycogen synthase kinase-3α/β, allowing β-catenin nuclear translocation and transcriptional activity. Furthermore, inhibition of TG2 and ILK using small molecules, neutralizing antibodies, or shRNA-mediated knockdown blocks cell adhesion to the FN matrix, as well as the Wnt receptor response to the Wnt-3A ligand, and ultimately, cell adhesion, growth, and migration. In conclusion, we demonstrate that TG2 directly interacts with and activates ILK in OC cells and tumors and define a new mechanism that links ECM cues with β-catenin signaling in OC. These results suggest a central role of TG2–FN–integrin clusters in ECM rearrangement and indicate that downstream effector ILK may represent a potential new therapeutic target in OC.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University