- Browse by Author
Browsing by Author "Arroyo, Eliott"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Epimeric vitamin D and cardiovascular structure and function in advanced CKD and after kidney transplantation(Oxford University Press, 2024) Arroyo, Eliott; Leber, Cecilia A.; Burney, Heather N.; Li, Yang; Li, Xiaochun; Lu, Tzong-shi; Jones, Glenville; Kaufmann, Martin; Ting, Stephen M. S.; Hiemstra, Thomas F.; Zehnder, Daniel; Lim, Kenneth; Medicine, School of MedicineBackground: 25-hydroxyvitamin D can undergo C-3 epimerization to produce 3-epi-25(OH)D3. 3-epi-25(OH)D3 levels decline in chronic kidney disease (CKD), but its role in regulating the cardiovascular system is unknown. Herein, we examined the relationship between 3-epi-25(OH)D3, and cardiovascular functional and structural endpoints in patients with CKD. Methods: We examined n = 165 patients with advanced CKD from the Cardiopulmonary Exercise Testing in Renal Failure and After Kidney Transplantation (CAPER) study cohort, including those who underwent kidney transplant (KTR, n = 76) and waitlisted patients who did not (NTWC, n = 89). All patients underwent cardiopulmonary exercise testing and echocardiography at baseline, 2 months and 12 months. Serum 3-epi-25(OH)D3 was analyzed by liquid chromatography-tandem mass spectrometry. Results: Patients were stratified into quartiles of baseline 3-epi-25(OH)D3 (Q1: <0.4 ng/mL, n = 51; Q2: 0.4 ng/mL, n = 26; Q3: 0.5-0.7 ng/mL, n = 47; Q4: ≥0.8 ng/mL, n = 41). Patients in Q1 exhibited lower peak oxygen uptake [VO2Peak = 18.4 (16.2-20.8) mL/min/kg] compared with Q4 [20.8 (18.6-23.2) mL/min/kg; P = .009]. Linear mixed regression model showed that 3-epi-25(OH)D3 levels increased in KTR [from 0.47 (0.30) ng/mL to 0.90 (0.45) ng/mL] and declined in NTWC [from 0.61 (0.32) ng/mL to 0.45 (0.29) ng/mL; P < .001]. Serum 3-epi-25(OH)D3 was associated with VO2Peak longitudinally in both groups [KTR: β (standard error) = 2.53 (0.56), P < .001; NTWC: 2.73 (0.70), P < .001], but was not with left ventricular mass or arterial stiffness. Non-epimeric 25(OH)D3, 24,25(OH)2D3 and the 25(OH)D3:24,25(OH)2D3 ratio were not associated with any cardiovascular outcome (all P > .05). Conclusions: Changes in 3-epi-25(OH)D3 levels may regulate cardiovascular functional capacity in patients with advanced CKD.Item Initiation of Dialysis Is Associated With Impaired Cardiovascular Functional Capacity.(AHA, 2022-07-19) Arroyo, Eliott; Umukoro, Peter E.; Burney, Heather N.; Li, Yang; Li, Xiaochun; Lane, Kathleen A.; Sher, S. Jawad; Lu, Tzong-Shi; Moe, Sharon M.; Moorthi, Ranjani; Coggan, Andrew R.; McGregor, Gordon; Hiemstra, Thomas F.; Zehnder, Daniel; Lim, Kenneth; Kinesiology, School of Health and Human SciencesBackground The transition to dialysis period carries a substantial increased cardiovascular risk in patients with chronic kidney disease. Despite this, alterations in cardiovascular functional capacity during this transition are largely unknown. The present study therefore sought to assess ventilatory exercise response measures in patients within 1 year of initiating dialysis. Methods and Results We conducted a cross-sectional study of 241 patients with chronic kidney disease stage 5 from the CAPER (Cardiopulmonary Exercise Testing in Renal Failure) study and from the intradialytic low-frequency electrical muscle stimulation pilot randomized controlled trial cohorts. Patients underwent cardiopulmonary exercise testing and echocardiography. Of the 241 patients (age, 48.9 [15.0] years; 154 [63.9%] men), 42 were predialytic (mean estimated glomerular filtration rate, 14 mL·min·1.73 m), 54 had a dialysis vintage ≤12 months, and 145 had a dialysis vintage >12 months. Dialysis vintage ≤12 months exhibited a significantly impaired cardiovascular functional capacity, as assessed by oxygen uptake at peak exercise (18.7 [5.8] mL·min·kg) compared with predialysis (22.7 [5.2] mL·min·kg; <0.001). Dialysis vintage ≤12 months also exhibited reduced peak workload, impaired peak heart rate, reduced circulatory power, and increased left ventricular mass index (<0.05 for all) compared with predialysis. After excluding those with prior kidney transplant, dialysis vintage >12 months exhibited a lower oxygen uptake at peak exercise (17.0 [4.9] mL·min·kg) compared with dialysis vintage ≤12 months (18.9 [5.9] mL·min·kg; =0.033). Conclusions Initiating dialysis is associated with a significant impairment in oxygen uptake at peak exercise and overall decrements in ventilatory and hemodynamic exercise responses that predispose patients to functional dependence. The magnitude of these changes is comparable to the differences between low-risk New York Heart Association class I and higher-risk New York Heart Association class II to IV heart failure.Item Klotho: An Emerging Factor With Ergogenic Potential(Frontiers, 2022-01) Arroyo, Eliott; Troutman, Ashley D.; Moorthi, Ranjani N.; Avin, Keith G.; Coggan, Andrew R.; Lim, Kenneth; Medicine, School of MedicineSarcopenia and impaired cardiorespiratory fitness are commonly observed in older individuals and patients with chronic kidney disease (CKD). Declines in skeletal muscle function and aerobic capacity can progress into impaired physical function and inability to perform activities of daily living. Physical function is highly associated with important clinical outcomes such as hospitalization, functional independence, quality of life, and mortality. While lifestyle modifications such as exercise and dietary interventions have been shown to prevent and reverse declines in physical function, the utility of these treatment strategies is limited by poor widespread adoption and adherence due to a wide variety of both perceived and actual barriers to exercise. Therefore, identifying novel treatment targets to manage physical function decline is critically important. Klotho, a remarkable protein with powerful anti-aging properties has recently been investigated for its role in musculoskeletal health and physical function. Klotho is involved in several key processes that regulate skeletal muscle function, such as muscle regeneration, mitochondrial biogenesis, endothelial function, oxidative stress, and inflammation. This is particularly important for older adults and patients with CKD, which are known states of Klotho deficiency. Emerging data support the existence of Klotho-related benefits to exercise and for potential Klotho-based therapeutic interventions for the treatment of sarcopenia and its progression to physical disability. However, significant gaps in our understanding of Klotho must first be overcome before we can consider its potential ergogenic benefits. These advances will be critical to establish the optimal approach to future Klotho-based interventional trials and to determine if Klotho can regulate physical dysfunction.Item Relationship between klotho and physical function in healthy aging(Springer, 2023-11-30) Arroyo, Eliott; Leber, Cecilia A.; Burney, Heather N.; Narayanan, Gayatri; Moorthi, Ranjani; Avin, Keith G.; Warden , Stuart J.; Moe, Sharon M.; Lim, Kenneth; Medicine, School of MedicineEpidemiological studies have reported a strong association between circulating Klotho and physical function; however, the cohorts were comprised of older adults with multiple comorbidities. Herein, we examined the relationship between Klotho and physical function in a community-based cohort of healthy adults. In this cross-sectional study, serum Klotho was measured in 80 adults who visited the Musculoskeletal Function, Imaging, and Tissue Resource Core of the Indiana Center for Musculoskeletal Health. Participants (n = 20, 10 [50%] men per group) were chosen into four age groups: 20–34, 35–49, 50–64, and ≥ 65 years, and were further grouped based on performance (low vs. high) on grip strength and chair stand tests. Klotho levels were lower in the ≥ 65 years group (703.0 [189.3] pg/mL; p = 0.022) and the 50–64 years group (722.6 [190.5] pg/mL; p = 0.045) compared to 20–34 years (916.1 [284.8] pg/mL). No differences were observed in Klotho between the low and high performers. The ≥ 65 years group walked a shorter distance during the 6-min walk test (6MWT) compared to 20–34 years (p = 0.005). Klotho was correlated with age (p < 0.001), body fat (p = 0.037), and 6MWT distance (p = 0.022). Klotho levels decline as early as the fifth decade of life, potentially before the onset of age-related impairment in exercise capacity.Item Skeletal muscle atrophy in clinical and preclinical models of chronic kidney disease: A systematic review and meta‐analysis(Wiley, 2024) Troutman, Ashley D.; Arroyo, Eliott; Sheridan, Elizabeth M.; D’Amico, Duncan J.; Brandt, Peyton R.; Hinrichs, Rachel; Chen, Xiwei; Lim, Kenneth; Avin, Keith G.; Physical Therapy, School of Health and Human SciencesPatients with chronic kidney disease (CKD) are often regarded as experiencing wasting of muscle mass and declining muscle strength and function, collectively termed sarcopenia. The extent of skeletal muscle wasting in clinical and preclinical CKD populations is unclear. We evaluated skeletal muscle atrophy in preclinical and clinical models of CKD, with multiple sub-analyses for muscle mass assessment methods, CKD severity, sex and across the different preclinical models of CKD. We performed a systematic literature review of clinical and preclinical studies that measured muscle mass/size using the following databases: Ovid Medline, Embase and Scopus. A random effects meta-analysis was utilized to determine standard mean difference (SMD; Hedges' g) between healthy and CKD. Heterogeneity was evaluated using the I2 statistic. Preclinical study quality was assessed via the Systematic Review Centre for Laboratory Animal Experimentation and clinical studies quality was assessed via the Newcastle-Ottawa Scale. This study was registered in PROSPERO (CRD42020180737) prior to initiation of the search. A total of 111 studies were included in this analysis using the following subgroups: 106 studies in the primary CKD analysis, 18 studies that accounted for diabetes and 7 kidney transplant studies. Significant atrophy was demonstrated in 78% of the preclinical studies and 49% of the clinical studies. The random effects model demonstrated a medium overall SMD (SMD = 0.58, 95% CI = 0.52-0.64) when combining clinical and preclinical studies, a medium SMD for the clinical population (SMD = 0.48, 95% CI = 0.42-0.55; all stages) and a large SMD for preclinical CKD (SMD = 0.95, 95% CI = 0.76-1.14). Further sub-analyses were performed based upon assessment methods, disease status and animal model. Muscle atrophy was reported in 49% of the clinical studies, paired with small mean differences. Preclinical studies reported significant atrophy in 78% of studies, with large mean differences. Across multiple clinical sub-analyses such as severity of CKD, dialysis modality and diabetes, a medium mean difference was found. Sub-analyses in both clinical and preclinical studies found a large mean difference for males and medium for females suggesting sex-specific implications. Muscle atrophy differences varied based upon assessment method for clinical and preclinical studies. Limitations in study design prevented conclusions to be made about the extent of muscle loss with disease progression, or the impact of dialysis. Future work would benefit from the use of standardized measurement methods and consistent clinical staging to improve our understanding of atrophy changes in CKD progression, and analysis of biological sex differences.Item Skeletal Muscle Complications in Chronic Kidney Disease(Springer, 2022-12) Troutman, Ashley D.; Arroyo, Eliott; Lim, Kenneth; Moorthi, Ranjani N.; Avin, Keith G.; Physical Therapy, School of Health and Human SciencesPurpose of Review To provide an overview of the recent literature investigating the pathophysiology of skeletal muscle changes, interventions for skeletal muscle, and effects of exercise in chronic kidney disease (CKD). Recent Findings There are multiple CKD-related changes that negatively impact muscle size and function. However, the variability in the assessment of muscle size, in particular, hinders the ability to truly understand the impact it may have in CKD. Exercise interventions to improve muscle size and function demonstrate inconsistent responses that warrant further investigation to optimize exercise prescription. Summary Despite progress in the field, there are many gaps in the knowledge of the pathophysiology of sarcopenia of CKD. Identifying these gaps will help in the design of interventions that can be tested to target muscle loss and its consequences such as impaired mobility, falls, and poor quality of life in patients with CKD.