ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Armstrong, Ruth"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Clinical exome sequencing efficacy and phenotypic expansions involving anomalous pulmonary venous return
    (Springer Nature, 2023) Huth, Emily A.; Zhao, Xiaonan; Owen, Nichole; Luna, Pamela N.; Vogel, Ida; Dorf, Inger L. H.; Joss, Shelagh; Clayton-Smith, Jill; Parker, Michael J.; Louw, Jacoba J.; Gewillig, Marc; Breckpot, Jeroen; Kraus, Alison; Sasaki, Erina; Kini, Usha; Burgess, Trent; Tan, Tiong Y.; Armstrong, Ruth; Neas, Katherine; Ferrero, Giovanni B.; Brusco, Alfredo; Kerstjens-Frederikse, Wihelmina S.; Rankin, Julia; Helvaty, Lindsey R.; Landis, Benjamin J.; Geddes, Gabrielle C.; McBride, Kim L.; Ware, Stephanie M.; Shaw, Chad A.; Lalani, Seema R.; Rosenfeld, Jill A.; Scott, Daryl A.; Medical and Molecular Genetics, School of Medicine
    Anomalous pulmonary venous return (APVR) frequently occurs with other congenital heart defects (CHDs) or extra-cardiac anomalies. While some genetic causes have been identified, the optimal approach to genetic testing in individuals with APVR remains uncertain, and the etiology of most cases of APVR is unclear. Here, we analyzed molecular data from 49 individuals to determine the diagnostic yield of clinical exome sequencing (ES) for non-isolated APVR. A definitive or probable diagnosis was made for 8 of those individuals yielding a diagnostic efficacy rate of 16.3%. We then analyzed molecular data from 62 individuals with APVR accrued from three databases to identify novel APVR genes. Based on data from this analysis, published case reports, mouse models, and/or similarity to known APVR genes as revealed by a machine learning algorithm, we identified 3 genes-EFTUD2, NAA15, and NKX2-1-for which there is sufficient evidence to support phenotypic expansion to include APVR. We also provide evidence that 3 recurrent copy number variants contribute to the development of APVR: proximal 1q21.1 microdeletions involving RBM8A and PDZK1, recurrent BP1-BP2 15q11.2 deletions, and central 22q11.2 deletions involving CRKL. Our results suggest that ES and chromosomal microarray analysis (or genome sequencing) should be considered for individuals with non-isolated APVR for whom a genetic etiology has not been identified, and that genetic testing to identify an independent genetic etiology of APVR is not warranted in individuals with EFTUD2-, NAA15-, and NKX2-1-related disorders.
  • Loading...
    Thumbnail Image
    Item
    Functional and clinical studies reveal pathophysiological complexity of CLCN4-related neurodevelopmental condition
    (Springer Nature, 2023) Palmer, Elizabeth E.; Pusch, Michael; Picollo, Alessandra; Forwood, Caitlin; Nguyen, Matthew H.; Suckow, Vanessa; Gibbons, Jessica; Hoff, Alva; Sigfrid, Lisa; Megarbane, Andre; Nizon, Mathilde; Cogné, Benjamin; Beneteau, Claire; Alkuraya, Fowzan S.; Chedrawi, Aziza; Hashem, Mais O.; Stamberger, Hannah; Weckhuysen, Sarah; Vanlander, Arnaud; Ceulemans, Berten; Rajagopalan, Sulekha; Nunn, Kenneth; Arpin, Stéphanie; Raynaud, Martine; Motter, Constance S.; Ward-Melver, Catherine; Janssens, Katrien; Meuwissen, Marije; Beysen, Diane; Dikow, Nicola; Grimmel, Mona; Haack, Tobias B.; Clement, Emma; McTague, Amy; Hunt, David; Townshend, Sharron; Ward, Michelle; Richards, Linda J.; Simons, Cas; Costain, Gregory; Dupuis, Lucie; Mendoza-Londono, Roberto; Dudding-Byth, Tracy; Boyle, Jackie; Saunders, Carol; Fleming, Emily; El Chehadeh, Salima; Spitz, Marie-Aude; Piton, Amelie; Gerard, Bénédicte; Warde, Marie-Thérèse Abi; Rea, Gillian; McKenna, Caoimhe; Douzgou, Sofia; Banka, Siddharth; Akman, Cigdem; Bain, Jennifer M.; Sands, Tristan T.; Wilson, Golder N.; Silvertooth, Erin J.; Miller, Lauren; Lederer, Damien; Sachdev, Rani; Macintosh, Rebecca; Monestier, Olivier; Karadurmus, Deniz; Collins, Felicity; Carter, Melissa; Rohena, Luis; Willemsen, Marjolein H.; Ockeloen, Charlotte W.; Pfundt, Rolph; Kroft, Sanne D.; Field, Michael; Laranjeira, Francisco E. R.; Fortuna, Ana M.; Soares, Ana R.; Michaud, Vincent; Naudion, Sophie; Golla, Sailaja; Weaver, David D.; Bird, Lynne M.; Friedman, Jennifer; Clowes, Virginia; Joss, Shelagh; Pölsler, Laura; Campeau, Philippe M.; Blazo, Maria; Bijlsma, Emilia K.; Rosenfeld, Jill A.; Beetz, Christian; Powis, Zöe; McWalter, Kirsty; Brandt, Tracy; Torti, Erin; Mathot, Mikaël; Mohammad, Shekeeb S.; Armstrong, Ruth; Kalscheuer, Vera M.; Medical and Molecular Genetics, School of Medicine
    Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a "shift" of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University