- Browse by Author
Browsing by Author "Arciero, Julia"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Assessing the hemodynamic contribution of capillaries, arterioles, and collateral arteries to vascular adaptations in arterial insufficiency(Wiley, 2019) Arciero, Julia; Lembcke, Lauren; Franko, Elizabeth; Unthank, Joseph; Mathematical Sciences, School of ScienceObjective There is currently a lack of clarity regarding which vascular segments contribute most significantly to flow compensation following a major arterial occlusion. This study uses hemodynamic principles and computational modeling to demonstrate the relative contributions of capillaries, arterioles, and collateral arteries at rest or exercise following an abrupt, total, and sustained femoral arterial occlusion. Methods The vascular network of the simulated rat hindlimb is based on robust measurements of blood flow and pressure in healthy rats from exercise and training studies. The sensitivity of calf blood flow to acute or chronic vascular adaptations in distinct vessel segments is assessed. Results The model demonstrates that decreasing the distal microcirculation resistance has almost no effect on flow compensation, while decreasing collateral arterial resistance is necessary to restore resting calf flow following occlusion. Full restoration of non‐occluded flow is predicted under resting conditions given all chronic adaptations, but only 75% of non‐occluded flow is restored under exercise conditions. Conclusion This computational method establishes the hemodynamic significance of acute and chronic adaptations in the microvasculature and collateral arteries under rest and exercise conditions. Regardless of the metabolic level being simulated, this study consistently shows the dominating significance of collateral vessels following an occlusion.Item Blood flow regulation and oxygen transport in a heterogeneous model of the mouse retina(Elsevier, 2020-11) Fry, Brendan C.; Harris, Alon; Siesky, Brent; Arciero, Julia; Mathematical Sciences, School of ScienceElevated intraocular pressure is the primary risk factor for glaucoma, yet vascular health and ocular hemodynamics have also been established as important risk factors for the disease. The precise physiological mechanisms and processes by which flow impairment and reduced tissue oxygenation relate to retinal ganglion cell death are not fully known. Mathematical modeling has emerged as a useful tool to help decipher the role of hemodynamic alterations in glaucoma. Several previous models of the retinal microvasculature and tissue have investigated the individual impact of spatial heterogeneity, flow regulation, and oxygen transport on the system. This study combines all three of these components into a heterogeneous mathematical model of retinal arterioles that includes oxygen transport and acute flow regulation in response to changes in pressure, shear stress, and oxygen demand. The metabolic signal (Si) is implemented as a wall-derived signal that reflects the oxygen deficit along the network, and three cases of conduction are considered: no conduction, a constant signal, and a flow-weighted signal. The model shows that the heterogeneity of the downstream signal serves to regulate flow better than a constant conducted response. In fact, the increases in average tissue PO2 due to a flow-weighted signal are often more significant than if the entire level of signal is increased. Such theoretical work supports the importance of the non-uniform structure of the retinal vasculature when assessing the capability and/or dysfunction of blood flow regulation in the retinal microcirculation.Item Diagnostic Capability of OCTA-Derived Macular Biomarkers for Early to Moderate Primary Open Angle Glaucom(MDPI, 2024-07-18) Verticchio Vercellin, Alice; Harris, Alon; Oddone, Francesco; Carnevale, Carmela; Siesky, Brent A.; Arciero, Julia; Fry, Brendan; Eckert, George; Sidoti, Paul A.; Antman, Gal; Alabi, Denise; Coleman-Belin, Janet C.; Pasquale, Louis R.; Mathematical Sciences, School of ScienceBackground/Objectives: To investigate macular vascular biomarkers for the detection of primary open-angle glaucoma (POAG). Methods: A total of 56 POAG patients and 94 non-glaucomatous controls underwent optical coherence tomography angiography (OCTA) assessment of macular vessel density (VD) in the superficial (SCP), and deep (DCP) capillary plexus, foveal avascular zone (FAZ) area, perimeter, VD, choriocapillaris and outer retina flow area. POAG patients were classified for severity based on the Glaucoma Staging System 2 of Brusini. ANCOVA comparisons adjusted for age, sex, race, hypertension, diabetes, and areas under the receiver operating characteristic curves (AUCs) for POAG/control differentiation were compared using the DeLong method. Results: Global, hemispheric, and quadrant SCP VD was significantly lower in POAG patients in the whole image, parafovea, and perifovea (p < 0.001). No significant differences were found between POAG and controls for DCP VD, FAZ parameters, and the retinal and choriocapillaris flow area (p > 0.05). SCP VD in the whole image and perifovea were significantly lower in POAG patients in stage 2 than stage 0 (p < 0.001). The AUCs of SCP VD in the whole image (0.86) and perifovea (0.84) were significantly higher than the AUCs of all DCP VD (p < 0.05), FAZ parameters (p < 0.001), and retinal (p < 0.001) and choriocapillaris flow areas (p < 0.05). Whole image SCP VD was similar to the AUC of the global retinal nerve fiber layer (RNFL) (AUC = 0.89, p = 0.53) and ganglion cell complex (GCC) thickness (AUC = 0.83, p = 0.42). Conclusions: SCP VD is lower with increasing functional damage in POAG patients. The AUC for SCP VD was similar to RNFL and GCC using clinical diagnosis as the reference standard.Item Heterogeneity of Ocular Hemodynamic Biomarkers among Open Angle Glaucoma Patients of African and European Descent(MDPI, 2023-02-06) Siesky, Brent; Harris, Alon; Verticchio Vercellin, Alice; Arciero, Julia; Fry, Brendan; Eckert, George; Guidoboni, Giovanna; Oddone, Francesco; Antman, Gal; Mathematical Sciences, School of ScienceThis study investigated the heterogeneity of ocular hemodynamic biomarkers in early open angle glaucoma (OAG) patients and healthy controls of African (AD) and European descent (ED). Sixty OAG patients (38 ED, 22 AD) and 65 healthy controls (47 ED, 18 AD) participated in a prospective, cross-sectional study assessing: intraocular pressure (IOP), blood pressure (BP), ocular perfusion pressure (OPP), visual field (VF) and vascular densities (VD) via optical coherence tomography angiography (OCTA). Comparisons between outcomes were adjusted for age, diabetes status and BP. VF, IOP, BP and OPP were not significantly different between OAG subgroups or controls. Multiple VD biomarkers were significantly lower in OAG patients of ED (p < 0.05) while central macular VD was lower in OAG patients of AD vs. OAG patients of ED (p = 0.024). Macular and parafoveal thickness were significantly lower in AD OAG patients compared to those of ED (p = 0.006–0.049). OAG patients of AD had a negative correlation between IOP and VF index (r = −0.86) while ED patients had a slightly positive relationship (r = 0.26); difference between groups (p < 0.001). Age-adjusted OCTA biomarkers exhibit significant variation in early OAG patients of AD and ED.Item Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance(Association for Research in Vision and Opthalmology, 2014-07) Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua; Department of Mathematical Sciences, School of SciencePURPOSE: This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. METHODS: A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. RESULTS: The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. CONCLUSIONS: The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics.Item Metabolic blood flow regulation in a hybrid model of the human retinal microcirculation(Elsevier, 2023) Albright, Amanda; Fry, Brendan C.; Verticchio, Alice; Siesky, Brent; Harris, Alon; Arciero, Julia; Mathematical Sciences, School of ScienceThe retinal vascular network supplies perfusion to vital visual structures, including retinal ganglion cells responsible for vision. Impairments in retinal blood flow and oxygenation are involved in the progression of many ocular diseases, including glaucoma. In this study, an established theoretical hybrid model of a retinal microvascular network is extended to include the effects of local blood flow regulation on oxygenation. A heterogeneous representation of the arterioles based on confocal microscopy images is combined with a compartmental description of the downstream capillaries and venules. A Green’s function method is used to simulate oxygen transport in the arterioles, and a Krogh cylinder model is applied to the capillary and venular compartments. Acute blood flow regulation is simulated in response to changes in pressure, shear stress, and metabolism. Model results predict that both increased intraocular pressure and impairment of blood flow regulation can cause decreased tissue oxygenation, indicating that both mechanisms represent factors that could lead to impaired oxygenation characteristic of ocular disease. Results also indicate that the metabolic response mechanism reduces the fraction of poorly oxygenated tissue but that the pressure- and shear stress-dependent response mechanisms may hinder the vascular response to changes in oxygenation. Importantly, the heterogeneity of the vascular network demonstrates that traditionally reported average values of tissue oxygen levels hide significant localized defects in tissue oxygenation that may be involved in disease processes, including glaucoma. Ultimately, the model framework presented in this study will facilitate future comparisons to sectorial-specific clinical data to better assess the role of impaired blood flow regulation in ocular disease.Item Metabolic Signaling in a Theoretical Model of the Human Retinal Microcirculation(MDPI, 2021) Arciero, Julia; Fry, Brendan; Albright, Amanda; Mattingly, Grace; Scanlon, Hannah; Abernathy, Mandy; Siesky, Brent; Verticchio Vercellin, Alice; Harris, Alon; Mathematical Sciences, School of ScienceImpaired blood flow and oxygenation contribute to many ocular pathologies, including glaucoma. Here, a mathematical model is presented that combines an image-based heterogeneous representation of retinal arterioles with a compartmental description of capillaries and venules. The arteriolar model of the human retina is extrapolated from a previous mouse model based on confocal microscopy images. Every terminal arteriole is connected in series to compartments for capillaries and venules, yielding a hybrid model for predicting blood flow and oxygenation throughout the retinal microcirculation. A metabolic wall signal is calculated in each vessel according to blood and tissue oxygen levels. As expected, a higher average metabolic signal is generated in pathways with a lower average oxygen level. The model also predicts a wide range of metabolic signals dependent on oxygen levels and specific network location. For example, for high oxygen demand, a threefold range in metabolic signal is predicted despite nearly identical PO2 levels. This whole-network approach, including a spatially nonuniform structure, is needed to describe the metabolic status of the retina. This model provides the geometric and hemodynamic framework necessary to predict ocular blood flow regulation and will ultimately facilitate early detection and treatment of ischemic and metabolic disorders of the eye.Item Modeling acute and chronic vascular responses to a major arterial occlusion(Wiley, 2022-01) Zhao, Erin; Barber, Jared; Sen, Chandan K.; Arciero, Julia; Mathematical Sciences, School of ScienceObjective To incorporate chronic vascular adaptations into a mathematical model of the rat hindlimb to simulate flow restoration following total occlusion of the femoral artery. Methods A vascular wall mechanics model is used to simulate acute and chronic vascular adaptations in the collateral arteries and collateral-dependent arterioles of the rat hindlimb. On an acute timeframe, the vascular tone of collateral arteries and distal arterioles is determined by responses to pressure, shear stress, and metabolic demand. On a chronic timeframe, sustained dilation of arteries and arterioles induces outward vessel remodeling represented by increased passive vessel diameter (arteriogenesis), and low venous oxygen saturation levels induce the growth of new capillaries represented by increased capillary number (angiogenesis). Results The model predicts that flow compensation to an occlusion is enhanced primarily by arteriogenesis of the collateral arteries on a chronic time frame. Blood flow autoregulation is predicted to be disrupted and to occur for higher pressure values following femoral arterial occlusion. Conclusions Structural adaptation of the vasculature allows for increased blood flow to the collateral-dependent region after occlusion. Although flow is still below pre-occlusion levels, model predictions indicate that interventions which enhance collateral arteriogenesis would have the greatest potential for restoring flow.Item Modeling Temporal Patterns of Neural Synchronization: Synaptic Plasticity and Stochastic Mechanisms(2020-08) Zirkle, Joel; Rubchinsky, Leonid; Kuznetsov, Alexey; Arciero, Julia; Barber, JaredNeural synchrony in the brain at rest is usually variable and intermittent, thus intervals of predominantly synchronized activity are interrupted by intervals of desynchronized activity. Prior studies suggested that this temporal structure of the weakly synchronous activity might be functionally significant: many short desynchronizations may be functionally different from few long desynchronizations, even if the average synchrony level is the same. In this thesis, we use computational neuroscience methods to investigate the effects of (i) spike-timing dependent plasticity (STDP) and (ii) noise on the temporal patterns of synchronization in a simple model. The model is composed of two conductance-based neurons connected via excitatory unidirectional synapses. In (i) these excitatory synapses are made plastic, in (ii) two different types of noise implementation to model the stochasticity of membrane ion channels is considered. The plasticity results are taken from our recently published article, while the noise results are currently being compiled into a manuscript. The dynamics of this network is subjected to the time-series analysis methods used in prior experimental studies. We provide numerical evidence that both STDP and channel noise can alter the synchronized dynamics in the network in several ways. This depends on the time scale that plasticity acts on and the intensity of the noise. However, in general, the action of STDP and noise in the simple network considered here is to promote dynamics with short desynchronizations (i.e. dynamics reminiscent of that observed in experimental studies) over dynamics with longer desynchronizations.Item Modeling the interactions of bacteria and Toll-like receptor-mediated inflammation in necrotizing enterocolitis(Elsevier, 2013-03-21) Arciero, Julia; Bard Ermentrout, G.; Siggers, Richard; Afrazi, Amin; Hackam, David; Vodovotz, Yoram; Rubin, Jonathan; Department of Mathematical Sciences, School of ScienceNecrotizing enterocolitis (NEC) is a severe disease of the gastrointestinal tract in premature infants, characterized by a disrupted intestinal epithelium and an exaggerated pro-inflammatory response. Since the activation of Toll-like receptor-4 (TLR4) blocks cell migration and proliferation and contributes to an uncontrolled inflammatory response within the intestine, this receptor has been identified as a key contributor to the development of NEC. Toll-like receptor-9 (TLR9) has been shown to sense bacterial genome components (CpG DNA) and to play an anti-inflammatory role in NEC. We present in vitro results demonstrating direct inhibition of TLR4 activation by CpG DNA, and we develop a mathematical model of bacteria-immune interactions within the intestine to investigate how such inhibition of TLR4 signaling might alter inflammation, associated bacterial invasion of tissue, and resulting outcomes. The model predicts that TLR9 can inhibit both the beneficial and detrimental effects of TLR4, and thus a proper balance of action by these two receptors is needed to promote intestinal health. The model results are also used to explore three interventions that could potentially prevent the development of NEC: reducing bacteria in the mucus layer, administering probiotic treatment, and blocking TLR4 activation. While the model shows that these interventions would be successful in most cases, the model is also used to identify situations in which the proposed treatments might be harmful.