- Browse by Author
Browsing by Author "Araldi, Elisa"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Germline loss-of-function PAM variants are enriched in subjects with pituitary hypersecretion(Cold Spring Harbor Laboratory, 2023-01-20) Trivellin, Giampaolo; Daly, Adrian F.; Hernández-Ramírez, Laura C.; Araldi, Elisa; Tatsi, Christina; Dale, Ryan K.; Fridell, Gus; Mittal, Arjun; Faucz, Fabio R.; Iben, James R.; Li, Tianwei; Vitali, Eleonora; Stojilkovic, Stanko S.; Kamenicky, Peter; Villa, Chiara; Baussart, Bertrand; Chittiboina, Prashant; Toro, Camilo; Gahl, William A.; Eugster, Erica A.; Naves, Luciana A.; Jaffrain-Rea, Marie-Lise; de Herder, Wouter W.; Neggers, Sebastian Jcmm; Petrossians, Patrick; Beckers, Albert; Lania, Andrea G.; Mains, Richard E.; Eipper, Betty A.; Stratakis, Constantine A.; Pediatrics, School of MedicinePituitary adenomas (PAs) are common, usually benign tumors of the anterior pituitary gland which, for the most part, have no known genetic cause. PAs are associated with major clinical effects due to hormonal dysregulation and tumoral impingement on vital brain structures. Following the identification of a loss-of-function variant (p.Arg703Gln) in the PAM gene in a family with pituitary gigantism, we investigated 299 individuals with sporadic PAs and 17 familial isolated pituitary adenomas kindreds for PAM variants. PAM encodes a multifunctional protein responsible for the essential C-terminal amidation of secreted peptides. Genetic screening was performed by germline and tumor sequencing and germline copy number variation (CNV) analysis. No germline CNVs or somatic single nucleotide variants (SNVs) were identified. We detected seven likely pathogenic heterozygous missense, truncating, and regulatory SNVs. These SNVs were found in sporadic subjects with GH excess (p.Gly552Arg and p.Phe759Ser), pediatric Cushing disease (c.−133T>C and p.His778fs), or with different types of PAs (c.−361G>A, p.Ser539Trp, and p.Asp563Gly). The SNVs were functionally tested in vitro for protein expression and trafficking by Western blotting, for splicing by minigene assays, and for amidation activity in cell lysates and serum samples. These analyses confirmed a deleterious effect on protein expression and/or function. By interrogating 200,000 exomes from the UK Biobank, we confirmed a significant association of the PAM gene and rare PAM SNVs to diagnoses linked to pituitary gland hyperfunction. Identification of PAM as a candidate gene associated with pituitary hypersecretion opens the possibility of developing novel therapeutics based on altering PAM function.Item Loss of VHL in mesenchymal progenitors of the limb bud alters multiple steps of endochondral bone development(Elsevier, 2014-09-01) Mangiavini, Laura; Merceron, Christophe; Araldi, Elisa; Khatri, Richa; Gerard-O'Riley, Rita; Wilson, Tremika LeShan; Rankin, Erinn B.; Giaccia, Amato J.; Schipani, Ernestina; Department of Medicine, Division of General Internal Medicine, IU School of MedicineAdaptation to low oxygen tension (hypoxia) is a critical event during development. The transcription factors Hypoxia Inducible Factor-1α (HIF-1α) and HIF-2α are essential mediators of the homeostatic responses that allow hypoxic cells to survive and differentiate. Von Hippel Lindau protein (VHL) is the E3 ubiquitin ligase that targets HIFs to the proteasome for degradation in normoxia. We have previously demonstrated that the transcription factor HIF-1α is essential for survival and differentiation of growth plate chondrocytes, whereas HIF-2α is not necessary for fetal growth plate development. We have also shown that VHL is important for endochondral bone development, since loss of VHL in chondrocytes causes severe dwarfism. In this study, in order to expand our understanding of the role of VHL in chondrogenesis, we conditionally deleted VHL in mesenchymal progenitors of the limb bud, i.e. in cells not yet committed to the chondrocyte lineage. Deficiency of VHL in limb bud mesenchyme does not alter the timely differentiation of mesenchymal cells into chondrocytes. However, it causes structural collapse of the cartilaginous growth plate as a result of impaired proliferation, delayed terminal differentiation, and ectopic death of chondrocytes. This phenotype is associated to delayed replacement of cartilage by bone. Notably, loss of HIF-2α fully rescues the late formation of the bone marrow cavity in VHL mutant mice, though it does not affect any other detectable abnormality of the VHL mutant growth plates. Our findings demonstrate that VHL regulates bone morphogenesis as its loss considerably alters size, shape and overall development of the skeletal elements.