- Browse by Author
Browsing by Author "Appaiah, Hitesh"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item AKT Alters Genome-Wide Estrogen Receptor α Binding and Impacts Estrogen Signaling in Breast Cancer(American Society for Microbiology, 2008-12) Bhat-Nakshatri, Poornima; Wang, Guohua; Appaiah, Hitesh; Luktuke, Nikhil; Carroll, Jason S.; Geistlinger, Tim R.; Brown, Myles; Badve, Sunil; Liu, Yunlong; Nakshatri, HarikrishnaEstrogen regulates several biological processes through estrogen receptor α (ERα) and ERβ. ERα-estrogen signaling is additionally controlled by extracellular signal activated kinases such as AKT. In this study, we analyzed the effect of AKT on genome-wide ERα binding in MCF-7 breast cancer cells. Parental and AKT-overexpressing cells displayed 4,349 and 4,359 ERα binding sites, respectively, with ∼60% overlap. In both cell types, ∼40% of estrogen-regulated genes associate with ERα binding sites; a similar percentage of estrogen-regulated genes are differentially expressed in two cell types. Based on pathway analysis, these differentially estrogen-regulated genes are linked to transforming growth factor β (TGF-β), NF-κB, and E2F pathways. Consistent with this, the two cell types responded differently to TGF-β treatment: parental cells, but not AKT-overexpressing cells, required estrogen to overcome growth inhibition. Combining the ERα DNA-binding pattern with gene expression data from primary tumors revealed specific effects of AKT on ERα binding and estrogen-regulated expression of genes that define prognostic subgroups and tamoxifen sensitivity of ERα-positive breast cancer. These results suggest a unique role of AKT in modulating estrogen signaling in ERα-positive breast cancers and highlights how extracellular signal activated kinases can change the landscape of transcription factor binding to the genome.Item ITF2 is a target of CXCR4 in MDA-MB-231 breast cancer cells and is associated with reduced survival in estrogen receptor-negative breast cancer(Taylor & Francis, 2010-08-15) Appaiah, Hitesh; Bhat-Nakshatri, Poornima; Mehta, Rutika; Thorat, Mangesh; Badve, Sunil; Nakshatri, HarikrishnaCXCR4, a chemokine receptor, plays an important role in breast cancer growth, invasion, and metastasis. The transcriptional targets of CXCR4 signaling are not known. Microarray analysis of CXCR4-enriched and CXCR4-low subpopulations of the MDA-MB-231 breast cancer cell line, which has a constitutively active CXCR4 signaling network, revealed differential expression of ∼ 200 genes in the CXCR4-enriched subpopulation. ITF2, upregulated in CXCR4-enriched cells, was investigated further. Expression array datasets of primary breast tumors revealed higher ITF2 expression in estrogen receptor negative tumors, which correlated with reduced progression free and overall survival and suggested its relevance in breast cancer progression. CXCL12, a CXCR4 ligand, increased ITF2 expression in MDA-MB-231 cells. ITF2 is a basic helixloop-helix transcription factor that controls the epithelial-to-mesenchymal transition and the function of the ID family (inhibitor-of-differentiation) of transcription factors, such as ID2. ID2 promotes differentiation of breast epithelial cells and its reduced expression in breast cancer is associated with an unfavorable prognosis. Both CXCR4 and ITF2 repressed ID2 expression. In xenograft studies, CXCR4-enriched cells formed large tumors and exhibited significantly elevated lung metastasis. Short interfering RNA against ITF2 reduced invasion of the CXCR4-enriched MDA-MB-231 subpopulation, whereas ITF2 overexpression restored the invasive capacity of MDA-MB-231 cells expressing CXCR4shRNA. Furthermore, overexpression of ITF2 in these cells enhanced tumor growth. We propose that ITF2 is one of the CXCR4 targets, which is involved in CXCR4-dependent tumor growth and invasion of breast cancer cells.Item SLUG/SNAI2 and Tumor Necrosis Factor Generate Breast Cells With CD44+/CD24- Phenotype(BMC, 2010-08-06) Bhat-Nakshatri, Poornima; Appaiah, Hitesh; Ballas, Christopher; Pick-Franke, Patricia; Goulet, Robert; Badve, Sunil; Srour, Edward F; Nakshatri, HarikrishnaBackground Breast cancer cells with CD44+/CD24- cell surface marker expression profile are proposed as cancer stem cells (CSCs). Normal breast epithelial cells that are CD44+/CD24- express higher levels of stem/progenitor cell associated genes. We, amongst others, have shown that cancer cells that have undergone epithelial to mesenchymal transition (EMT) display the CD44+/CD24- phenotype. However, whether all genes that induce EMT confer the CD44+/CD24- phenotype is unknown. We hypothesized that only a subset of genes associated with EMT generates CD44+/CD24- cells. Methods MCF-10A breast epithelial cells, a subpopulation of which spontaneously acquire the CD44+/CD24- phenotype, were used to identify genes that are differentially expressed in CD44+/CD24- and CD44-/CD24+ cells. Ingenuity pathway analysis was performed to identify signaling networks that linked differentially expressed genes. Two EMT-associated genes elevated in CD44+/CD24- cells, SLUG and Gli-2, were overexpressed in the CD44-/CD24+ subpopulation of MCF-10A cells and MCF-7 cells, which are CD44-/CD24+. Flow cytometry and mammosphere assays were used to assess cell surface markers and stem cell-like properties, respectively. Results Two thousand thirty five genes were differentially expressed (p < 0.001, fold change ≥ 2) between the CD44+/CD24- and CD44-/CD24+ subpopulations of MCF-10A. Thirty-two EMT-associated genes including SLUG, Gli-2, ZEB-1, and ZEB-2 were expressed at higher levels in CD44+/CD24- cells. These EMT-associated genes participate in signaling networks comprising TGFβ, NF-κB, and human chorionic gonadotropin. Treatment with tumor necrosis factor (TNF), which induces NF-κB and represses E-cadherin, or overexpression of SLUG in CD44-/CD24+ MCF-10A cells, gave rise to a subpopulation of CD44+/CD24- cells. Overexpression of constitutively active p65 subunit of NF-κB in MCF-10A resulted in a dramatic shift to the CD44+/CD24+ phenotype. SLUG overexpression in MCF-7 cells generated CD44+/CD24+ cells with enhanced mammosphere forming ability. In contrast, Gli-2 failed to alter CD44 and CD24 expression. Conclusions EMT-mediated generation of CD44+/CD24- or CD44+/CD24+ cells depends on the genes that induce or are associated with EMT. Our studies reveal a role for TNF in altering the phenotype of breast CSC. Additionally, the CD44+/CD24+ phenotype, in the context of SLUG overexpression, can be associated with breast CSC "stemness" behavior based on mammosphere forming ability.Item A water soluble parthenolide analogue suppresses in vivo tumor growth of two tobacco associated cancers, lung and bladder cancer, by targeting NF-κB and generating reactive oxygen species(Wiley, 2011-05-15) Shanmugam, Rajasubramaniam; Kusumanchi, Praveen; Appaiah, Hitesh; Cheng, Liang; Crooks, Peter; Neelakantan, Sundar; Peat, Tyler; Klaunig, James; Matthews, William; Nakshatri, Harikrishna; Sweeney, Christopher JDimethylaminoparthenolide (DMAPT) is a water soluble parthenolide analogue with preclinical activity in hematologic malignancies. Using NSCLC cell lines (A549, H522) and an immortalized human bronchial epithelial cell line (BEAS2B) and TCC cell lines (UMUC-3, HT-1197, HT-1376) and a bladder papilloma (RT-4), we aimed to characterize DMAPT's anti-cancer activity in tobacco associated neoplasms. Flow cytometric, electrophorectic mobility gel shift assays (EMSA), and western blot studies measured generation of reactive oxygen species (ROS), inhibition of NFκB DNA binding, and changes in cell cycle distribution and apoptotic proteins. DMAPT generated ROS with subsequent JNK activation and also decreased NFκB DNA binding and anti-apoptotic proteins, TRAF-2 and XIAP. DMAPT induced apoptotic cell death and altered cell cycle distribution with upregulation of p21 and p73 levels in a cell type dependent manner. DMAPT suppressed cyclin D1 in BEAS2B. DMAPT retained NFκB and cell cycle inhibitory activity in the presence of the tobacco carcinogen nitrosamine ketone, 4(methylnitrosamino)-1-(3–pyridyl)-1-butanone (NNK). Using a BrdU accumulation assay, 5 to 20μM of DMAPT was shown to inhibit cellular proliferation of all cell lines by more than 95%. Oral dosing of DMAPT suppressed in vivo A549 and UMUC-3 subcutaneous xenograft growth by 54% (p=0.015) and 63% (p<0.01) respectively and A549 lung metastatic volume by 28% (p=0.043). In total this data demonstrates DMAPT's novel anti-cancer properties in both early and late stage tobacco associated neoplasms as well as its significant in vivo activity. The data provides support for the conduct of clinical trials in TCC and NSCLC.