- Browse by Author
Browsing by Author "Anthony, Tracy G."
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item Activation and execution of the hepatic integrated stress response by dietary essential amino acid deprivation is amino acid specific(Wiley, 2022) Jonsson, William O.; Mirek, Emily T.; Wek, Ronald C.; Anthony, Tracy G.; Biochemistry and Molecular Biology, School of MedicineDietary removal of an essential amino acid (EAA) triggers the integrated stress response (ISR) in liver. Herein, we explored the mechanisms that activate the ISR and execute changes in transcription and translation according to the missing EAA. Wild‐type mice and mice lacking general control nonderepressible 2 (Gcn2) were fed an amino acid complete diet or a diet devoid of either leucine or sulfur amino acids (methionine and cysteine). Serum and liver leucine concentrations were significantly reduced within the first 6 h of feeding a diet lacking leucine, corresponding with modest, GCN2‐dependent increases in Atf4 mRNA translation and induction of selected ISR target genes (Fgf21, Slc7a5, Slc7a11). In contrast, dietary removal of the sulfur amino acids lowered serum methionine, but not intracellular methionine, and yet hepatic mRNA abundance of Atf4, Fgf21, Slc7a5, Slc7a11 substantially increased regardless of GCN2 status. Liver tRNA charging levels did not correlate with intracellular EAA concentrations or GCN2 status and remained similar to mice fed a complete diet. Furthermore, loss of Gcn2 increased the occurrence of ribosome collisions in liver and derepressed mechanistic target of rapamycin complex 1 signal transduction, but these changes did not influence execution of the ISR. We conclude that ISR activation is directed by intracellular EAA concentrations, but ISR execution is not. Furthermore, a diet devoid of sulfur amino acids does not require GCN2 for the ISR to execute changes to the transcriptome.Item Biology of Activating Transcription Factor 4 (ATF4) and Its Role in Skeletal Muscle Atrophy(Elsevier, 2022) Ebert, Scott M.; Rasmussen, Blake B.; Judge, Andrew R.; Judge, Sarah M.; Larsson, Lars; Wek, Ronald C.; Anthony, Tracy G.; Marcotte, George R.; Miller, Matthew J.; Yorek, Mark A.; Vella, Adrian; Volpi, Elena; Stern, Jennifer I.; Strub, Matthew D.; Ryan, Zachary; Talley, John J.; Adams, Christopher M.; Biochemistry and Molecular Biology, School of MedicineActivating transcription factor 4 (ATF4) is a multifunctional transcription regulatory protein in the basic leucine zipper superfamily. ATF4 can be expressed in most if not all mammalian cell types, and it can participate in a variety of cellular responses to specific environmental stresses, intracellular derangements, or growth factors. Because ATF4 is involved in a wide range of biological processes, its roles in human health and disease are not yet fully understood. Much of our current knowledge about ATF4 comes from investigations in cultured cell models, where ATF4 was originally characterized and where further investigations continue to provide new insights. ATF4 is also an increasingly prominent topic of in vivo investigations in fully differentiated mammalian cell types, where our current understanding of ATF4 is less complete. Here, we review some important high-level concepts and questions concerning the basic biology of ATF4. We then discuss current knowledge and emerging questions about the in vivo role of ATF4 in one fully differentiated cell type, mammalian skeletal muscle fibers.Item Dietary Methionine Restriction Regulates Liver Protein Synthesis and Gene Expression Independently of Eukaryotic Initiation Factor 2 Phosphorylation in Mice(Oxford University Press, 2017-06) Pettit, Ashley P.; Jonsson, William O.; Bargoud, Albert R.; Mirek, Emily T.; Peelor, Frederick F., III; Wang, Yongping; Gettys, Thomas W.; Kimball, Scot R.; Miller, Benjamin F.; Hamilton, Karyn L.; Wek, Ronald C.; Anthony, Tracy G.; Biochemistry and Molecular Biology, School of MedicineBackground: The phosphorylation of eukaryotic initiation factor 2 (p-eIF2) during dietary amino acid insufficiency reduces protein synthesis and alters gene expression via the integrated stress response (ISR).Objective: We explored whether a Met-restricted (MR) diet activates the ISR to reduce body fat and regulate protein balance.Methods: Male and female mice aged 3-6 mo with either whole-body deletion of general control nonderepressible 2 (Gcn2) or liver-specific deletion of protein kinase R-like endoplasmic reticulum kinase (Perk) alongside wild-type or floxed control mice were fed an obesogenic diet sufficient in Met (0.86%) or an MR (0.12% Met) diet for ≤5 wk. Ala enrichment with deuterium was measured to calculate protein synthesis rates. The guanine nucleotide exchange factor activity of eIF2B was measured alongside p-eIF2 and hepatic mRNA expression levels at 2 d and 5 wk. Metabolic phenotyping was conducted at 4 wk, and body composition was measured throughout. Results were evaluated with the use of ANOVA (P < 0.05).Results: Feeding an MR diet for 2 d did not increase hepatic p-eIF2 or reduce eIF2B activity in wild-type or Gcn2-/- mice, yet many genes transcriptionally regulated by the ISR were altered in both strains in the same direction and amplitude. Feeding an MR diet for 5 wk increased p-eIF2 and reduced eIF2B activity in wild-type but not Gcn2-/- mice, yet ISR-regulated genes altered in both strains similarly. Furthermore, the MR diet reduced mixed and cytosolic but not mitochondrial protein synthesis in both the liver and skeletal muscle regardless of Gcn2 status. Despite the similarities between strains, the MR diet did not increase energy expenditure or reduce body fat in Gcn2-/- mice. Finally, feeding the MR diet to mice with Perk deleted in the liver increased hepatic p-eIF2 and altered body composition similar to floxed controls.Conclusions: Hepatic activation of the ISR resulting from an MR diet does not require p-eIF2. Gcn2 status influences body fat loss but not protein balance when Met is restricted.Item Discordant regulation of eIF2 kinase GCN2 and mTORC1 during nutrient stress(Oxford University Press, 2021-06-04) Misra, Jagannath; Holmes, Michael J.; Mirek, Emily T.; Langevin, Michael; Kim, Hyeong-Geug; Carlson, Kenneth R.; Watford, Malcolm; Dong, X. Charlie; Anthony, Tracy G.; Wek, Ronald C.; Biochemistry and Molecular Biology, School of MedicineAppropriate regulation of the Integrated stress response (ISR) and mTORC1 signaling are central for cell adaptation to starvation for amino acids. Halofuginone (HF) is a potent inhibitor of aminoacylation of tRNAPro with broad biomedical applications. Here, we show that in addition to translational control directed by activation of the ISR by general control nonderepressible 2 (GCN2), HF increased free amino acids and directed translation of genes involved in protein biogenesis via sustained mTORC1 signaling. Deletion of GCN2 reduced cell survival to HF whereas pharmacological inhibition of mTORC1 afforded protection. HF treatment of mice synchronously activated the GCN2-mediated ISR and mTORC1 in liver whereas Gcn2-null mice allowed greater mTORC1 activation to HF, resulting in liver steatosis and cell death. We conclude that HF causes an amino acid imbalance that uniquely activates both GCN2 and mTORC1. Loss of GCN2 during HF creates a disconnect between metabolic state and need, triggering proteostasis collapse.Item THE EIF2 KINASE PERK AND THE INTEGRATED STRESS RESPONSE FACILITATE ACTIVATION OF ATF6 DURING ENDOPLASMIC RETICULUM STRESS(Office of the Vice Chancellor for Research, 2012-04-13) Teske, Brian F.; Wek, Ronald C.; Wek, Sheree A.; Bunpo, Piyawan; Cundiff, Judy K.; McClintick, Jeanette N.; Anthony, Tracy G.; Wek, Ronald C.Disruptions of the endoplasmic reticulum (ER) that perturb protein folding cause ER stress and elicit an unfolded protein response (UPR) that involves changes in gene expression aimed at expanding the ER protein processing capacity and alleviating cellular injury. Three ER stress sensors PERK, ATF6, and IRE1 implement the UPR. Mutations of these ER stress sensors have been linked to diabetes, cancer and neurodegenerative diseases. Consequently, understanding the regulation of these three pathways has substantial therapeutic potential for development of biomarkers and pharmaceuticals for management of these conditions. PERK phosphorylation of eIF2 during ER stress represses protein synthesis, which prevents further influx of ER client proteins. PERK phosphorylation of eIF2 (eIF2~P) also induces preferential translation of ATF4, a transcription activator of the UPR. In this study we show that the PERK/eIF2~P/ATF4 pathway is required not only for translational control, but also activation of ATF6 and its target genes. The PERK pathway facilitates both the synthesis of ATF6 and trafficking of ATF6 from the ER to the Golgi for intramembrane proteolysis and activation of ATF6. As a consequence, liver-specific depletion of PERK significantly reduces both the translational and transcriptional phases of the UPR, leading to reduced protein chaperone expression, disruptions of lipid metabolism, and enhanced apoptosis. These findings show that the regulatory networks of the UPR are fully integrated, and helps explain the diverse biological defects associated with loss of PERK.Item The eukaryotic initiation factor 2 kinase GCN2 protects against hepatotoxicity during asparaginase treatment(American Physiological Society, 2013-11) Wilson, Gabriel J.; Bunpo, Piyawan; Cundiff, Judy K.; Wek, Ronald C.; Anthony, Tracy G.; Biochemistry & Molecular Biology, School of MedicineAsparaginase is an important drug in the treatment regimen for acute lymphoblastic leukemia. Asparaginase depletes circulating asparagine and glutamine, activating an amino acid stress response (AAR) involving phosphorylation of eukaryotic initiation factor 2 (eIF2) by general control nonderepressible kinase 2 (GCN2). We hypothesized that GCN2 functions to mitigate hepatic stress during asparaginase therapy by activating the AAR. To test this idea, C57BL/6J wild-type mice (Gcn2(+/+)) and those deleted for Gcn2 (Gcn2(-/-)) were injected with asparaginase or saline excipient one time daily for 1 or 6 days. In liver, increased phosphorylation of eIF2 and mRNA expression of AAR target genes activating transcription factor 4, asparagine synthetase, eIF4E-binding protein 1, and CAAT enhancer-binding protein homologous protein were significantly blunted or blocked in the liver of Gcn2(-/-) mice. Loss of AAR during asparaginase coincided with increases in mammalian target of rapamycin signaling, hepatic triglyceride accumulation, and DNA damage in association with genetic markers of oxidative stress (glutathione peroxidase) and inflammation (tumor necrosis factor alpha-α). Although asparaginase depleted circulating asparagine in both Gcn2(+/+) and Gcn2(-/-) mice, all other amino acids, including plasma glutamine, were elevated in the plasma of Gcn2(-/-) mice. This study shows that loss of GCN2 promotes oxidative stress and inflammatory-mediated DNA damage during asparaginase therapy, suggesting that patients with reduced or dysfunctional AAR may be at risk of developing hepatic complications during asparaginase treatment.Item GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis(eLife Sciences, 2022-09-15) Cordova, Ricardo A.; Misra, Jagannath; Amin, Parth H.; Klunk, Anglea J.; Damayanti, Nur P.; Carlson, Kenneth R.; Elmendorf, Andrew J.; Kim, Hyeong-Geug; Mirek, Emily T.; Elzey, Bennet D.; Miller, Marcus J.; Dong, X. Charlie; Cheng, Liang; Anthony, Tracy G.; Pili, Roberto; Wek, Ronald C.; Staschke, Kirk A.; Biochemistry and Molecular Biology, School of MedicineA stress adaptation pathway termed the integrated stress response has been suggested to be active in many cancers including prostate cancer (PCa). Here, we demonstrate that the eIF2 kinase GCN2 is required for sustained growth in androgen-sensitive and castration-resistant models of PCa both in vitro and in vivo, and is active in PCa patient samples. Using RNA-seq transcriptome analysis and a CRISPR-based phenotypic screen, GCN2 was shown to regulate expression of over 60 solute-carrier (SLC) genes, including those involved in amino acid transport and loss of GCN2 function reduces amino acid import and levels. Addition of essential amino acids or expression of 4F2 (SLC3A2) partially restored growth following loss of GCN2, suggesting that GCN2 targeting of SLC transporters is required for amino acid homeostasis needed to sustain tumor growth. A small molecule inhibitor of GCN2 showed robust in vivo efficacy in androgen-sensitive and castration-resistant mouse models of PCa, supporting its therapeutic potential for the treatment of PCa.Item GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment(APS, 2015-02-15) Wilson, Gabriel J.; Lennox, Brittany A.; She, Pengxiang; Mirek, Emily T.; Al Baghdadi, Rana J. T.; Fusakio, Michael E.; Dixon, Joseph L.; Henderson, Gregory C.; Wek, Ronald C.; Anthony, Tracy G.; Department of Biochemistry & Molecular Biology, IU School of MedicineThe antileukemic agent asparaginase triggers the amino acid response (AAR) in the liver by activating the eukaryotic initiation factor 2 (eIF2) kinase general control nonderepressible 2 (GCN2). To explore the mechanism by which AAR induction is necessary to mitigate hepatic lipid accumulation and prevent liver dysfunction during continued asparaginase treatment, wild-type and Gcn2 null mice were injected once daily with asparaginase or phosphate buffered saline for up to 14 days. Asparaginase induced mRNA expression of multiple AAR genes and greatly increased circulating concentrations of the metabolic hormone fibroblast growth factor 21 (FGF21) independent of food intake. Loss of Gcn2 precluded mRNA expression and circulating levels of FGF21 and blocked mRNA expression of multiple genes regulating lipid synthesis and metabolism including Fas, Ppara, Pparg, Acadm, and Scd1 in both liver and white adipose tissue. Furthermore, rates of triglyceride export and protein expression of apolipoproteinB-100 were significantly reduced in the livers of Gcn2 null mice treated with asparaginase, providing a mechanistic basis for the increase in hepatic lipid content. Loss of AAR-regulated antioxidant defenses in Gcn2 null livers was signified by reduced Gpx1 gene expression alongside increased lipid peroxidation. Substantial reductions in antithrombin III hepatic expression and activity in the blood of asparaginase-treated Gcn2 null mice indicated liver dysfunction. These results suggest that the ability of the liver to adapt to prolonged asparaginase treatment is influenced by GCN2-directed regulation of FGF21 and oxidative defenses, which, when lost, corresponds with maladaptive effects on lipid metabolism and hemostasis.Item GCN2 is required to maintain core body temperature in mice during acute cold(American Physiological Society, 2023) Levy, Jordan L.; Mirek, Emily T.; Rodriguez, Esther M.; Zalma, Brian; Burns, Jeffrey; Jonsson, William O.; Sampath, Harini; Staschke, Kirk A.; Wek, Ronald C.; Anthony, Tracy G.; Biochemistry and Molecular Biology, School of MedicineNonshivering thermogenesis in rodents requires macronutrients to fuel the generation of heat during hypothermic conditions. In this study, we examined the role of the nutrient sensing kinase, general control nonderepressible 2 (GCN2) in directing adaptive thermogenesis during acute cold exposure in mice. We hypothesized that GCN2 is required for adaptation to acute cold stress via activation of the integrated stress response (ISR) resulting in liver production of FGF21 and increased amino acid transport to support nonshivering thermogenesis. In alignment with our hypothesis, female and male mice lacking GCN2 failed to adequately increase energy expenditure and veered into torpor. Mice administered a small molecule inhibitor of GCN2 were also profoundly intolerant to acute cold stress. Gcn2 deletion also impeded liver-derived FGF21 but in males only. Within the brown adipose tissue (BAT), acute cold exposure increased ISR activation and its transcriptional execution in males and females. RNA sequencing in BAT identified transcripts that encode actomyosin mechanics and transmembrane transport as requiring GCN2 during cold exposure. These transcripts included class II myosin heavy chain and amino acid transporters, critical for maximal thermogenesis during cold stress. Importantly, Gcn2 deletion corresponded with higher circulating amino acids and lower intracellular amino acids in the BAT during cold stress. In conclusion, we identify a sex-independent role for GCN2 activation to support adaptive thermogenesis via uptake of amino acids into brown adipose. NEW & NOTEWORTHY: This paper details the discovery that GCN2 activation is required in both male and female mice to maintain core body temperature during acute cold exposure. The results point to a novel role for GCN2 in supporting adaptive thermogenesis via amino acid transport and actomyosin mechanics in brown adipose tissue.Item General Control Nonderepressible 2 (GCN2) Kinase Protects Oligodendrocytes and White Matter during Branched-Chain Amino Acid Deficiency in Mice(2013-09) She, Pengxiang; Bunpo, Piyawan; Cundiff, Judy K.; Wek, Ronald C.; Harris, Robert A.; Anthony, Tracy G.; Department of Biochemistry and Molecular Biology, IU School of MedicineBranched-chain amino acid (BCAA) catabolism is regulated by branched-chain α-keto acid dehydrogenase, an enzyme complex that is inhibited when phosphorylated by its kinase (BDK). Loss of BDK function in mice and humans causes BCAA deficiency and epilepsy with autistic features. In response to amino acid deficiency, phosphorylation of eukaryotic initiation factor 2α (eIF2∼P) by general control nonderepressible 2 (GCN2) activates the amino acid stress response. We hypothesized that GCN2 functions to protect the brain during chronic BCAA deficiency. To test this idea, we generated mice lacking both Gcn2 and Bdk (GBDK) and examined the development of progeny. GBDK mice appeared normal at birth, but they soon stopped growing, developed severe ataxia, tremor, and anorexia, and died by postnatal day 15. BCAA levels in brain were diminished in both Bdk−/− and GBDK pups. Brains from Bdk−/− pups exhibited robust eIF2∼P and amino acid stress response induction, whereas these responses were absent in GBDK mouse brains. Instead, myelin deficiency and diminished expression of myelin basic protein were noted in GBDK brains. Genetic markers of oligodendrocytes and astrocytes were also reduced in GBDK brains in association with apoptotic cell death in white matter regions of the brain. GBDK brains further demonstrated reduced Sod2 and Cat mRNA and increased Tnfα mRNA expression. The data are consistent with the idea that loss of GCN2 during BCAA deficiency compromises glial cell defenses to oxidative and inflammatory stress. We conclude that GCN2 protects the brain from developing a lethal leukodystrophy in response to amino acid deficiencies.