ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Andriantiana, Jacky"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Antiangiogenic Activity of Naturally-occurring and synthetic Homoisoflavonoids from the Hyacinthaceae (sensu APGII)
    (American Chemical Society, 2019-04-05) Schwikkard, Sianne; Whitmore, Hannah; Sishtla, Kamakshi; Sulaiman, Rania S.; Shetty, Trupti; Basavarajappa, Halesha D.; Waller, Catherine; Alqahtani, Alaa; Frankemoelle, Lennart; Chapman, Andy; Crouch, Neil; Wetschnig, Wolfgang; Knirsch, Walter; Andriantiana, Jacky; Mas-Claret, Eduard; Langat, Moses K.; Mulholland, Dulcie; Corson, Timothy W.; Ophthalmology, School of Medicine
    Excessive blood vessel formation in the eye is implicated in wet age-related macular degeneration, proliferative diabetic retinopathy, neovascular glaucoma, and retinopathy of prematurity, which are major causes of blindness. Small molecule antiangiogenic drugs are strongly needed to supplement existing biologics. Homoisoflavonoids have been previously shown to have potent antiproliferative activities in endothelial cells over other cell types. Moreover, they demonstrated a strong antiangiogenic potential in vitro and in vivo in animal models of ocular neovascularization. Here, we tested the antiangiogenic activity of a group of naturally occurring homoisoflavonoids isolated from the family Hyacinthaceae and related synthetic compounds, chosen for synthesis based on structure-activity relationship observations. Several compounds showed interesting antiproliferative and antiangiogenic activities in vitro on retinal microvascular endothelial cells, a disease-relevant cell type, with the synthetic chromane, 46, showing the best activity (GI50 of 2.3 × 10-4 μM).
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University