ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Andrews, Caroline F."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Haemophilus ducreyi Infection Induces Oxidative Stress, Central Metabolic Changes, and a Mixed Pro- and Anti-inflammatory Environment in the Human Host
    (American Society for Microbiology, 2022) Brothwell, Julie A.; Fortney, Kate R.; Gao, Hongyu; Wilson, Landon S.; Andrews, Caroline F.; Tran, Tuan M.; Hu, Xin; Batteiger, Teresa A.; Barnes, Stephen; Liu, Yunlong; Spinola, Stanley M.; Microbiology and Immunology, School of Medicine
    Few studies have investigated host-bacterial interactions at sites of infection in humans using transcriptomics and metabolomics. Haemophilus ducreyi causes cutaneous ulcers in children and the genital ulcer disease chancroid in adults. We developed a human challenge model in which healthy adult volunteers are infected with H. ducreyi on the upper arm until they develop pustules. Here, we characterized host-pathogen interactions in pustules using transcriptomics and metabolomics and examined interactions between the host transcriptome and metabolome using integrated omics. In a previous pilot study, we determined the human and H. ducreyi transcriptomes and the metabolome of pustule and wounded sites of 4 volunteers (B. Griesenauer, T. M. Tran, K. R. Fortney, D. M. Janowicz, et al., mBio 10:e01193-19, 2019, https://doi.org/10.1128/mBio.01193-19). While we could form provisional transcriptional networks between the host and H. ducreyi, the study was underpowered to integrate the metabolome with the host transcriptome. To better define and integrate the transcriptomes and metabolome, we used samples from both the pilot study (n = 4) and new volunteers (n = 8) to identify 5,495 human differentially expressed genes (DEGs), 123 H. ducreyi DEGs, 205 differentially abundant positive ions, and 198 differentially abundant negative ions. We identified 42 positively correlated and 29 negatively correlated human-H. ducreyi transcriptome clusters. In addition, we defined human transcriptome-metabolome networks consisting of 9 total clusters, which highlighted changes in fatty acid metabolism and mitigation of oxidative damage. Taken together, the data suggest a mixed pro- and anti-inflammatory environment and rewired central metabolism in the host that provides a hostile, nutrient-limited environment for H. ducreyi.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University