- Browse by Author
Browsing by Author "Anderson-Baucum, Emily K."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item A Translational Regulatory Mechanism Mediated by Hypusinated Eukaryotic Initiation Factor 5A Facilitates β-Cell Identity and Function(American Diabetes Association, 2024) Connors, Craig T.; Villaca, Catharina B. P.; Anderson-Baucum, Emily K.; Rosario, Spencer R.; Rutan, Caleb D.; Childress, Paul J.; Padgett, Leah R.; Robertson, Morgan A.; Mastracci, Teresa L.; Biology, School of ScienceAs professional secretory cells, β-cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic β-cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional β-cells is not well defined. In this study, we have identified a translational regulatory mechanism mediated by the specialized mRNA translation factor eukaryotic initiation factor 5A (eIF5A), which facilitates the maintenance of β-cell identity and function. The mRNA translation function of eIF5A is only active when it is posttranslationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of β-cell DHPS in mice reduces the synthesis of proteins critical to β-cell identity and function at the stage of β-cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the β-cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand.Item Deoxyhypusine synthase, an essential enzyme for hypusine biosynthesis, is required for proper exocrine pancreas development(Wiley, 2021-05) Padgett, Leah R.; Robertson, Morgan A.; Anderson-Baucum, Emily K.; Connors, Craig T.; Wu, Wenting; Mirmira, Raghavendra G.; Mastracci, Teresa L.; Biology, School of SciencePancreatic diseases including diabetes and exocrine insufficiency would benefit from therapies that reverse cellular loss and/or restore cellular mass. The identification of molecular pathways that influence cellular growth is therefore critical for future therapeutic generation. Deoxyhypusine synthase (DHPS) is an enzyme that post-translationally modifies and activates the mRNA translation factor eukaryotic initiation factor 5A (eIF5A). Previous work demonstrated that the inhibition of DHPS impairs zebrafish exocrine pancreas development; however, the link between DHPS, eIF5A, and regulation of pancreatic organogenesis remains unknown. Herein we identified that the conditional deletion of either Dhps or Eif5a in the murine pancreas results in the absence of acinar cells. Because DHPS catalyzes the activation of eIF5A, we evaluated and uncovered a defect in mRNA translation concomitant with defective production of proteins that influence cellular development. Our studies reveal a heretofore unappreciated role for DHPS and eIF5A in the synthesis of proteins required for cellular development and function.Item NMP4, An Arbiter of Bone Cell Secretory Capacity And Regulator of Skeletal Response to PTH Therapy(Springer, 2023) Korff, Crystal; Atkinson, Emily; Adaway, Michele; Klunk, Angela; Wek, Ronald C.; Vashishth, Deepak; Wallace, Joseph M.; Anderson-Baucum, Emily K.; Evans-Molina, Carmella; Robling, Alexander G.; Bidwell, Joseph P.; Medical and Molecular Genetics, School of MedicineThe skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4-deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.Item Retention of sedentary obese visceral white adipose tissue phenotype with intermittent physical activity despite reduced adiposity(American Psychological Society, 2015-09) Wainright, Katherine S.; Fleming, Nicholas J.; Rowles, Joe L.; Welly, Rebecca J.; Zidon, Terese M.; Young-Min, Park; Gaines, T'Keaya L.; Scroggins, Rebecca J.; Anderson-Baucum, Emily K.; Hasty, Alyssa H.; Vieira-Potter, Victoria J.; Padilla, Jaume; Department of Medicine, IU School of MedicineRegular physical activity is effective in reducing visceral white adipose tissue (AT) inflammation and oxidative stress, and these changes are commonly associated with reduced adiposity. However, the impact of multiple periods of physical activity, intercalated by periods of inactivity, i.e., intermittent physical activity, on markers of AT inflammation and oxidative stress is unknown. In the present study, 5-wk-old male C57BL/6 mice were randomized into three groups (n = 10/group): sedentary, regular physical activity, and intermittent physical activity, for 24 wk. All animals were singly housed and fed a diet containing 45% kcal from fat. Regularly active mice had access to voluntary running wheels throughout the study period, whereas intermittently active mice had access to running wheels for 3-wk intervals (i.e., 3 wk on/3 wk off) throughout the study. At death, regular and intermittent physical activity was associated with similar reductions in visceral AT mass (approximately −24%, P < 0.05) relative to sedentary. However, regularly, but not intermittently, active mice exhibited decreased expression of visceral AT genes related to inflammation (e.g., monocyte chemoattractant protein 1), immune cell infiltration (e.g., CD68, CD11c, F4/80, CD11b/CD18), oxidative stress (e.g., p47 phagocyte oxidase), and endoplasmic reticulum stress (e.g., CCAAT enhancer-binding protein homologous protein; all P < 0.05). Furthermore, regular, but not intermittent, physical activity was associated with a trend toward improvement in glucose tolerance (P = 0.059). Collectively, these findings suggest that intermittent physical activity over a prolonged period of time may lead to a reduction in adiposity but with retention of a sedentary obese white AT and metabolic phenotype.Item SERCA2 Deficiency Impairs Pancreatic β-Cell Function in Response to Diet-Induced Obesity(American Diabetes Association, 2016-10) Tong, Xin; Kono, Tatsuyoshi; Anderson-Baucum, Emily K.; Yamamoto, Wataru; Gilon, Patrick; Lebeche, Djamel; Day, Richard N.; Shull, Gary E.; Evans-Molina, Carmella; Cellular and Integrative Physiology, School of MedicineThe sarcoendoplasmic reticulum (ER) Ca2+ ATPase 2 (SERCA2) pump is a P-type ATPase tasked with the maintenance of ER Ca2+ stores. Whereas β-cell SERCA2 expression is reduced in diabetes, the role of SERCA2 in the regulation of whole-body glucose homeostasis has remained uncharacterized. To this end, SERCA2 heterozygous mice (S2HET) were challenged with a high-fat diet (HFD) containing 45% of kilocalories from fat. After 16 weeks of the HFD, S2HET mice were hyperglycemic and glucose intolerant, but adiposity and insulin sensitivity were not different between HFD-fed S2HET mice and HFD-fed wild-type controls. Consistent with a defect in β-cell function, insulin secretion, glucose-induced cytosolic Ca2+ mobilization, and the onset of steady-state glucose-induced Ca2+ oscillations were impaired in HFD-fed S2HET islets. Moreover, HFD-fed S2HET mice exhibited reduced β-cell mass and proliferation, altered insulin production and proinsulin processing, and increased islet ER stress and death. In contrast, SERCA2 activation with a small molecule allosteric activator increased ER Ca2+ storage and rescued tunicamycin-induced β-cell death. In aggregate, these data suggest a critical role for SERCA2 and the regulation of ER Ca2+ homeostasis in the β-cell compensatory response to diet-induced obesity.