ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Anderson, Jennifer L."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Early Changes in Porcine Larynges Following Injection of Motor-Endplate Expressing Muscle Cells for the Treatment of Unilateral Vocal Fold Paralysis
    (Wiley, 2024) Kaefer, Samuel L.; Zhang, Lujuan; Morrison, Rachel A.; Brookes, Sarah; Awonusi, Oluwaseyi; Shay, Elizabeth; Hoilett, Orlando S.; Anderson, Jennifer L.; Goergen, Craig J.; Voytik-Harbin, Sherry; Halum, Stacey; Otolaryngology -- Head and Neck Surgery, School of Medicine
    Objectives: No curative injectable therapy exists for unilateral vocal fold paralysis. Herein, we explore the early implications of muscle-derived motor-endplate expressing cells (MEEs) for injectable vocal fold medialization after recurrent laryngeal nerve (RLN) injury. Methods: Yucatan minipigs underwent right RLN transection (without repair) and muscle biopsies. Autologous muscle progenitor cells were isolated, cultured, differentiated, and induced to form MEEs. Three weeks after the injury, MEEs or saline were injected into the paralyzed right vocal fold. Outcomes including evoked laryngeal electromyography (LEMG), laryngeal adductor pressure, and acoustic vocalization data were analyzed up to 7 weeks post-injury. Harvested porcine larynges were examined for volume, gene expression, and histology. Results: MEE injections were tolerated well, with all pigs demonstrating continued weight gain. Blinded analysis of videolaryngoscopy post-injection revealed infraglottic fullness, and no inflammatory changes. Four weeks after injection, LEMG revealed on average higher right distal RLN activity retention in MEE pigs. MEE-injected pigs on average had vocalization durations, frequencies, and intensities higher than saline pigs. Post-mortem, the MEE-injected larynges revealed statistically greater volume on quantitative 3D ultrasound, and statistically increased expression of neurotrophic factors (BDNF, NGF, NTF3, NTF4, NTN1) on quantitative PCR. Conclusions: Minimally invasive MEE injection appears to establish an early molecular and microenvironmental framework to encourage innate RLN regeneration. Longer follow-up is needed to determine if early findings will translate into functional contraction.
  • Loading...
    Thumbnail Image
    Item
    In Vivo Visualization and Quantification of Rat Laryngeal Blood Supply After Hydration Challenge
    (Wiley, 2024) Duan, Chenwei; Anderson, Jennifer L.; Schepers, Luke E.; Damen, Frederick W.; Cox, Abigail; Goergen, Craig J.; Sivasankar, Preeti M.; Surgery, School of Medicine
    Objectives: Systemic dehydration decreases total body blood volume; however, hemodynamic alterations at the level of local organs, such as the larynx, remain unclear. Here we sought to quantify superior thyroid artery (STA) blood flow after dehydration and rehydration using in vivo magnetic resonance angiography (MRA) and ultrasound imaging in a rat model. Methods: Male Sprague-Dawley rats (N = 17) were included in this prospective, repeated measures design. Rats first underwent MRA to determine baseline STA cross-sectional area, followed by high-frequency in vivo ultrasound imaging to measure STA blood velocity at baseline. Next, rats were systemically dehydrated (water withholding), followed by rehydration (water ad-lib). Ultrasound imaging was repeated immediately after dehydration and following rehydration. The STA blood velocity and STA cross-sectional area were used to compute STA blood flow. Three rats served as temporal controls for ultrasound imaging. To determine if the challenges to hydration status affected the STA cross-sectional area, four rats underwent only MRA at baseline, dehydration, and rehydration. Results: Systemic dehydration resulted in 10.5% average body weight loss. Rehydration resulted in average body weight gain of 10.9%. Statistically significant reductions were observed in STA mean blood flow rate after dehydration. Rehydration reversed these changes to pre-dehydration levels. No significant differences were observed in STA cross-sectional area with dehydration or rehydration. Conclusion: Systemic dehydration decreased blood flow in the superior thyroid artery. Rehydration restored blood flow in the STA. Change in hydration status did not alter the STA cross-sectional area. These preliminary findings demonstrate the feasibility of using ultrasound and MRA to quantify hemodynamic changes and visualize laryngeal blood vessels.
  • Loading...
    Thumbnail Image
    Item
    Regenerative tissue filler for breast conserving surgery and other soft tissue restoration and reconstruction needs
    (Springer Nature, 2021-02-01) Puls, Theodore J.; Fisher, Carla S.; Cox, Abigail; Plantenga, Jeannie M.; McBride, Emma L.; Anderson, Jennifer L.; Goergen, Craig J.; Bible, Melissa; Moller, Tracy; Voytik‑Harbin, Sherry L.; Surgery, School of Medicine
    Complete removal of cancerous tissue and preservation of breast cosmesis with a single breast conserving surgery (BCS) is essential for surgeons. New and better options would allow them to more consistently achieve this goal and expand the number of women that receive this preferred therapy, while minimizing the need for re-excision and revision procedures or more aggressive surgical approaches (i.e., mastectomy). We have developed and evaluated a regenerative tissue filler that is applied as a liquid to defects during BCS prior to transitioning to a fibrillar collagen scaffold with soft tissue consistency. Using a porcine simulated BCS model, the collagen filler was shown to induce a regenerative healing response, characterized by rapid cellularization, vascularization, and progressive breast tissue neogenesis, including adipose tissue and mammary glands and ducts. Unlike conventional biomaterials, no foreign body response or inflammatory-mediated “active” biodegradation was observed. The collagen filler also did not compromise simulated surgical re-excision, radiography, or ultrasonography procedures, features that are important for clinical translation. When post-BCS radiation was applied, the collagen filler and its associated tissue response were largely similar to non-irradiated conditions; however, as expected, healing was modestly slower. This in situ scaffold-forming collagen is easy to apply, conforms to patient-specific defects, and regenerates complex soft tissues in the absence of inflammation. It has significant translational potential as the first regenerative tissue filler for BCS as well as other soft tissue restoration and reconstruction needs.
  • Loading...
    Thumbnail Image
    Item
    Toward Automation of the Supine Pressor Test for Preeclampsia
    (American Society of Mechanical Enginners, 2019-11) Qureshi, Hamna J.; Ma, Jessica L.; Anderson, Jennifer L.; Bosinski, Brett M.; Acharya, Aditi; Bennett, Rachel D.; Haas, David M.; Cox, Abigail D.; Wodicka, George R.; Reuter, David G.; Goergen, Craig J.; Medicine, School of Medicine
    Preeclampsia leads to increased risk of morbidity and mortality for both mother and fetus. Most previous studies have largely neglected mechanical compression of the left renal vein by the gravid uterus as a potential mechanism. In this study, we first used a murine model to investigate the pathophysiology of left renal vein constriction. The results indicate that prolonged renal vein stenosis after 14 days can cause renal necrosis and an increase in blood pressure (BP) of roughly 30 mmHg. The second part of this study aimed to automate a diagnostic tool, known as the supine pressor test (SPT), to enable pregnant women to assess their preeclampsia development risk. A positive SPT has been previously defined as an increase of at least 20 mmHg in diastolic BP when switching between left lateral recumbent and supine positions. The results from this study established a baseline BP increase between the two body positions in nonpregnant women and demonstrated the feasibility of an autonomous SPT in pregnant women. Our results demonstrate that there is a baseline increase in BP of roughly 10-14 mmHg and that pregnant women can autonomously perform the SPT. Overall, this work in both rodents and humans suggests that (1) stenosis of the left renal vein in mice leads to elevation in BP and acute renal failure, (2) nonpregnant women experience a baseline increase in BP when they shift from left lateral recumbent to supine position, and (3) the SPT can be automated and used autonomously.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University