ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Andersen, Rebecca"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Defining obstacles to emergency transfer of trauma patients: An evaluation of retriage processes from nontrauma and lower-level Illinois trauma centers
    (Elsevier, 2022) Slocum, John D.; Holl, Jane L.; Love, Remi; Shi, Meilynn; Mackersie, Robert; Alam, Hasan; Loftus, Timothy M.; Andersen, Rebecca; Bilimoria, Karl Y.; Stey, Anne M.; Surgery, School of Medicine
    Background: Retriage is the emergency transfer of severely injured patients from nontrauma and lower-level trauma centers to higher-level trauma centers. We identified the barriers to retriage at sending centers in a single health system. Methods: We conducted a failure modes effects and criticality analysis at 4 nontrauma centers and 5 lower-level trauma centers in a single health system. Clinicians from each center described the steps in the trauma assessment and retriage process to create a process map. We used standardized scoring to characterize each failure based on frequency, impact on retriage, and prevention safeguards. We ranked each failure using the scores to calculate a risk priority number. Results: We identified 26 steps and 93 failures. The highest-risk failure was refusal by higher-level trauma centers (receiving hospitals) to accept a patient. The most critical failures in the retriage process based on total risk, frequency, and safeguard scores were (1) refusal from a receiving higher-level trauma center to accept a patient (risk priority number = 191), (2) delay in a sending center's consultant examination of a patient in the emergency department (risk priority number = 177), and (3) delay in receiving hospital's consultant calling back (risk priority number = 177). Conclusion: We identified (1) addressing obstacles to determining clinical indications for retriage and (2) identifying receiving level I trauma centers who would accept the patient as opportunities to increase timely retriage. Establishing clear clinical indications for retriage that sending and receiving hospitals agree on represents an opportunity for intervention that could improve the retriage of injured patients.
  • Loading...
    Thumbnail Image
    Item
    Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin
    (CSH Press, 2015-04-15) Wu, Colleen; Rankin, Erinn B.; Castellini, Laura; Fernandez-Alcudia, Javier; LaGory, Edward L.; Andersen, Rebecca; Rhodes, Steven D.; Wilson, Tremika L.S.; Mohammad, Khalid S.; Castillo, Alesha B.; Guise, Theresa; Schipani, Ernestina; Giaccia, Amato J.; Department of Medicine, IU School of Medicine
    The bone microenvironment is composed of niches that house cells across variable oxygen tensions. However, the contribution of oxygen gradients in regulating bone and blood homeostasis remains unknown. Here, we generated mice with either single or combined genetic inactivation of the critical oxygen-sensing prolyl hydroxylase (PHD) enzymes (PHD1–3) in osteoprogenitors. Hypoxia-inducible factor (HIF) activation associated with Phd2 and Phd3 inactivation drove bone accumulation by modulating osteoblastic/osteoclastic cross-talk through the direct regulation of osteoprotegerin (OPG). In contrast, combined inactivation of Phd1, Phd2, and Phd3 resulted in extreme HIF signaling, leading to polycythemia and excessive bone accumulation by overstimulating angiogenic–osteogenic coupling. Wealso demonstrate that genetic ablation of Phd2 and Phd3 was sufficient to protect ovariectomized mice against bone loss without disrupting hematopoietic homeostasis. Importantly,we identify OPG as a HIF target gene capable of directing osteoblast-mediated osteoclastogenesis to regulate bone homeostasis. Here, we show that coordinated activation of specific PHD isoforms fine-tunes the osteoblastic response to hypoxia, thereby directing two important aspects of bone physiology: cross-talk between osteoblasts and osteoclasts and angiogenic–osteogenic coupling.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University