- Browse by Author
Browsing by Author "Alzheimer's Disease Genetics Consortium (ADGC)"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Genetic associations with psychosis and affective disturbance in Alzheimer's disease(Wiley, 2024-05-23) Antonsdottir, Inga Margret; Creese, Byron; Klei, Lambertus; DeMichele-Sweet, Mary Ann A.; Weamer, Elise A.; Garcia-Gonzalez, Pablo; Marquie, Marta; Boada, Mercè; Alarcón-Martín, Emilio; Valero, Sergi; NIA-LOAD Family Based Study Consortium; Alzheimer's Disease Genetics Consortium (ADGC); AddNeuroMed Consortium; Liu, Yushi; Hooli, Basavaraj; Aarsland, Dag; Selbaek, Geir; Bergh, Sverre; Rongve, Arvid; Saltvedt, Ingvild; Skjellegrind, Håvard K.; Engdahl, Bo; Andreassen, Ole A.; Borroni, Barbara; Mecocci, Patrizia; Wedatilake, Yehani; Mayeux, Richard; Foroud, Tatiana; Ruiz, Agustín; Lopez, Oscar L.; Kamboh, M. Ilyas; Ballard, Clive; Devlin, Bernie; Lyketsos, Constantine; Sweet, Robert A.; Medical and Molecular Genetics, School of MedicineIntroduction: Individuals with Alzheimer's disease (AD) commonly experience neuropsychiatric symptoms of psychosis (AD+P) and/or affective disturbance (depression, anxiety, and/or irritability, AD+A). This study's goal was to identify the genetic architecture of AD+P and AD+A, as well as their genetically correlated phenotypes. Methods: Genome-wide association meta-analysis of 9988 AD participants from six source studies with participants characterized for AD+P AD+A, and a joint phenotype (AD+A+P). Results: AD+P and AD+A were genetically correlated. However, AD+P and AD+A diverged in their genetic correlations with psychiatric phenotypes in individuals without AD. AD+P was negatively genetically correlated with bipolar disorder and positively with depressive symptoms. AD+A was positively correlated with anxiety disorder and more strongly correlated than AD+P with depressive symptoms. AD+P and AD+A+P had significant estimated heritability, whereas AD+A did not. Examination of the loci most strongly associated with the three phenotypes revealed overlapping and unique associations. Discussion: AD+P, AD+A, and AD+A+P have both shared and divergent genetic associations pointing to the importance of incorporating genetic insights into future treatment development. Highlights: It has long been known that psychotic and affective symptoms are often comorbid in individuals diagnosed with Alzheimer's disease. Here we examined for the first time the genetic architecture underlying this clinical observation, determining that psychotic and affective phenotypes in Alzheimer's disease are genetically correlated. Nevertheless, psychotic and affective phenotypes in Alzheimer's disease diverged in their genetic correlations with psychiatric phenotypes assessed in individuals without Alzheimer's disease. Psychosis in Alzheimer's disease was negatively genetically correlated with bipolar disorder and positively with depressive symptoms, whereas the affective phenotypes in Alzheimer's disease were positively correlated with anxiety disorder and more strongly correlated than psychosis with depressive symptoms. Psychosis in Alzheimer's disease, and the joint psychotic and affective phenotype, had significant estimated heritability, whereas the affective in AD did not. Examination of the loci most strongly associated with the psychotic, affective, or joint phenotypes revealed overlapping and unique associations.Item Longitudinal change in memory performance as a strong endophenotype for Alzheimer's disease(Wiley, 2024) Archer, Derek B.; Eissman, Jaclyn M.; Mukherjee, Shubhabrata; Lee, Michael L.; Choi, Seo-Eun; Scollard, Phoebe; Trittschuh, Emily H.; Mez, Jesse B.; Bush, William S.; Kunkle, Brian W.; Naj, Adam C.; Gifford, Katherine A.; Alzheimer's Disease Neuroimaging Initiative (ADNI); Alzheimer's Disease Genetics Consortium (ADGC); Alzheimer's Disease Sequencing Project (ADSP); Cuccaro, Michael L.; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Wang, Li-San; Schellenberg, Gerard D.; Mayeux, Richard P.; Haines, Jonathan L.; Jefferson, Angela L.; Kukull, Walter A.; Keene, C. Dirk; Saykin, Andrew J.; Thompson, Paul M.; Martin, Eden R.; Bennett, David A.; Barnes, Lisa L.; Schneider, Julie A.; Crane, Paul K.; Dumitrescu, Logan; Hohman, Timothy J.; Radiology and Imaging Sciences, School of MedicineIntroduction: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. Methods: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. Results: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. Discussion: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. Highlights: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.Item Sex-specific genetic architecture of late-life memory performance(Wiley, 2024) Eissman, Jaclyn M.; Archer, Derek B.; Mukherjee, Shubhabrata; Lee, Michael L.; Choi, Seo-Eun; Scollard, Phoebe; Trittschuh, Emily H.; Mez, Jesse B.; Bush, William S.; Kunkle, Brian W.; Naj, Adam C.; Gifford, Katherine A.; Alzheimer's Disease Neuroimaging Initiative (ADNI); Alzheimer's Disease Genetics Consortium (ADGC); The Alzheimer's Disease Sequencing Project (ADSP); Cuccaro, Michael L.; Cruchaga, Carlos; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Wang, Li-San; Schellenberg, Gerard D.; Mayeux, Richard P.; Haines, Jonathan L.; Jefferson, Angela L.; Kukull, Walter A.; Keene, C. Dirk; Saykin, Andrew J.; Thompson, Paul M.; Martin, Eden R.; Bennett, David A.; Barnes, Lisa L.; Schneider, Julie A.; Crane, Paul K.; Hohman, Timothy J.; Dumitrescu, Logan; Radiology and Imaging Sciences, School of MedicineBackground: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. Methods: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales = 11,942; Nfemales = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. Results: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. Discussion: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. Highlights: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.