- Browse by Author
Browsing by Author "Alonso, Laura C."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Hypusine biosynthesis in β cells links polyamine metabolism to facultative cellular proliferation to maintain glucose homeostasis(American Association for the Advancement of Science, 2019-12-03) Levasseur, Esther M.; Yamada, Kentaro; Piñeros, Annie R.; Wu, Wenting; Syed, Farooq; Orr, Kara S.; Anderson-Baucum, Emily; Mastracci, Teresa L.; Maier, Bernhard; Mosley, Amber L.; Liu, Yunlong; Bernal-Mizrachi, Ernesto; Alonso, Laura C.; Scott, Donald; Garcia-Ocaña, Adolfo; Tersey, Sarah A.; Mirmira, Raghavendra G.; Pediatrics, School of MedicineDeoxyhypusine synthase (DHPS) utilizes the polyamine spermidine to catalyze the hypusine modification of the mRNA translation factor eIF5A and promotes oncogenesis through poorly-defined mechanisms. Because germline deletion of Dhps is embryonically lethal, its role in normal postnatal cellular function in vivo remains unknown. We generated a mouse model that enabled the inducible, postnatal deletion of Dhps specifically in postnatal islet β cells, which function to maintain glucose homeostasis. Removal of Dhps did not have an effect under normal physiologic conditions. However, upon development of insulin resistance, which induces β-cell proliferation, Dhps deletion caused alterations in proteins required for mRNA translation and protein secretion, reduced production of the cell cycle molecule cyclin D2, impaired β-cell proliferation, and induced overt diabetes. We found that hypusine biosynthesis was downstream of protein kinase C-ζ and was required for c-Myc-induced proliferation. Our studies reveal a requirement for DHPS in β cells to link polyamines to mRNA translation to effect facultative cellular proliferation and glucose homeostasis.