ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alles, Neil"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2−/− mice
    (2007-09) Gil-Henn, Hava; Destaing, Olivier; Sims, Natalie A; Aoki, Kazuhiro; Alles, Neil; Neff, Lynn; Sanjay, Archana; Bruzzaniti, Angela; De Camilli, Pietro; Baron, Roland; Schlessinger, Joseph
    The protein tyrosine kinase Pyk2 is highly expressed in osteoclasts, where it is primarily localized in podosomes. Deletion of Pyk2 in mice leads to mild osteopetrosis due to impairment in osteoclast function. Pyk2-null osteoclasts were unable to transform podosome clusters into a podosome belt at the cell periphery; instead of a sealing zone only small actin rings were formed, resulting in impaired bone resorption. Furthermore, in Pyk2-null osteoclasts, Rho activity was enhanced while microtubule acetylation and stability were significantly reduced. Rescue experiments by ectopic expression of wild-type or a variety of Pyk2 mutants in osteoclasts from Pyk2−/− mice have shown that the FAT domain of Pyk2 is essential for podosome belt and sealing zone formation as well as for bone resorption. These experiments underscore an important role of Pyk2 in microtubule-dependent podosome organization, bone resorption, and other osteoclast functions.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University