- Browse by Author
Browsing by Author "Alders, Marielle"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item De novo variants in genes regulating stress granule assembly associate with neurodevelopmental disorders(American Association for the Advancement of Science, 2022) Jia, Xiangbin; Zhang, Shujie; Tan, Senwei; Du, Bing; He, Mei; Qin, Haisong; Chen, Jia; Duan, Xinyu; Luo, Jingsi; Chen, Fei; Ouyang, Luping; Wang, Jian; Chen, Guodong; Yu, Bin; Zhang, Ge; Zhang, Zimin; Lyu, Yongqing; Huang, Yi; Jiao, Jian; Chen, Jin Yun (Helen); Swoboda, Kathryn J.; Agolini, Emanuele; Novelli, Antonio; Leoni, Chiara; Zampino, Giuseppe; Cappuccio, Gerarda; Brunetti-Pierri, Nicola; Gerard, Benedicte; Ginglinger, Emmanuelle; Richer, Julie; McMillan, Hugh; White-Brown, Alexandre; Hoekzema, Kendra; Bernier, Raphael A.; Kurtz-Nelson, Evangeline C.; Earl, Rachel K.; Meddens, Claartje; Alders, Marielle; Fuchs, Meredith; Caumes, Roseline; Brunelle, Perrine; Smol, Thomas; Kuehl, Ryan; Day-Salvatore, Debra-Lynn; Monaghan, Kristin G.; Morrow, Michelle M.; Eichler, Evan E.; Hu, Zhengmao; Yuan, Ling; Tan, Jieqiong; Xia, Kun; Shen, Yiping; Guo, Hui; Pediatrics, School of MedicineStress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.Item Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome(Elsevier, 2021-11) Weerts, Marjolein J.A.; Lanko, Kristina; Guzmán-Vega, Francisco J.; Jackson, Adam; Ramakrishnan, Reshmi; Cardona-Londoño, Kelly J.; Peña-Guerra, Karla A.; van Bever, Yolande; van Paassen, Barbara W.; Kievit, Anneke; van Slegtenhorst, Marjon; Allen, Nicholas M.; Kehoe, Caroline M.; Robinson, Hannah K.; Pang, Lewis; Banu, Selina H.; Zaman, Mashaya; Efthymiou, Stephanie; Houlden, Henry; Järvelä, Irma; Lauronen, Leena; Määttä, Tuomo; Schrauwen, Isabelle; Leal, Suzanne M.; Ruivenkamp, Claudia A.L.; Barge-Schaapveld, Daniela Q.C.M.; Peeters-Scholte, Cacha M.P.C.D.; Galehdari, Hamid; Mazaheri, Neda; Sisodiya, Sanjay M.; Harrison, Victoria; Sun, Angela; Thies, Jenny; Pedroza, Luis Alberto; Lara-Taranchenko, Yana; Chinn, Ivan K.; Lupski, James R.; Garza-Flores, Alexandra; McGlothlin, Jeffery; Yang, Lin; Huang, Shaoping; Wang, Xiaodong; Jewett, Tamison; Rosso, Gretchen; Lin, Xi; Mohammed, Shehla; Merritt, J. Lawrence, II.; Mirzaa, Ghayda M.; Timms, Andrew E.; Scheck, Joshua; Elting, Mariet W.; Polstra, Abeltje M.; Schenck, Lauren; Ruzhnikov, Maura R.Z.; Vetro, Annalisa; Montomoli, Martino; Guerrini, Renzo; Koboldt, Daniel C.; Mihalic Mosher, Theresa; Pastore, Matthew T.; McBride, Kim L.; Peng, Jing; Pan, Zou; Willemsen, Marjolein; Koning, Susanne; Turnpenny, Peter D.; de Vries, Bert B.A.; Gilissen, Christian; Pfundt, Rolph; Lees, Melissa; Braddock, Stephen R.; Klemp, Kara C.; Vansenne, Fleur; van Gijn, Marielle E.; Quindipan, Catherine; Deardorff, Matthew A.; Hamm, J. Austin; Putnam, Abbey M.; Baud, Rebecca; Walsh, Laurence; Lynch, Sally A.; Baptista, Julia; Person, Richard E.; Monaghan, Kristin G.; Crunk, Amy; Keller-Ramey, Jennifer; Reich, Adi; Elloumi, Houda Zghal; Alders, Marielle; Kerkhof, Jennifer; McConkey, Haley; Haghshenas, Sadegheh; Maroofian, Reza; Sadikovic, Bekim; Banka, Siddharth; Arold, Stefan T.; Barakat, Tahsin Stefan; Medical and Molecular Genetics, School of MedicinePurpose: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. Methods: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. Results: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. Conclusion: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.Item De Novo and Inherited Loss-of-Function Variants in TLK2: Clinical and Genotype-Phenotype Evaluation of a Distinct Neurodevelopmental Disorder(Elsevier, 2018-06-07) Reijnders, Margot R.F.; Miller, Kerry A.; Alvi, Mohsan; Goos, Jacqueline A.C.; Lees, Melissa M.; de Burca, Anna; Henderson, Alex; Kraus, Alison; Mikat, Barbara; de Vries, Bert B.A.; Isidor, Bertrand; Kerr, Bronwyn; Marcelis, Carlo; Schluth-Bolard, Caroline; Deshpande, Charu; Ruivenkamp, Claudia A.L.; Wieczorek, Dagmar; Baralle, Diana; Blair, Edward M.; Engels, Hartmut; Lüdecke, Hermann-Josef; Eason, Jacqueline; Santen, Gijs W.E.; Clayton-Smith, Jill; Chandler, Kate; Tatton-Brown, Katrina; Payne, Katelyn; Helbig, Katherine; Radtke, Kelly; Nugent, Kimberly M.; Cremer, Kirsten; Strom, Tim M.; Bird, Lynne M.; Sinnema, Margje; Bitner-Glindzicz, Maria; van Dooren, Marieke F.; Alders, Marielle; Koopmans, Marije; Brick, Lauren; Kozenko, Mariya; Harline, Megan L.; Klaassens, Merel; Steinraths, Michelle; Cooper, Nicola S.; Edery, Patrick; Yap, Patrick; Terhal, Paulien A.; van der Spek, Peter J.; Lakeman, Phillis; Taylor, Rachel L.; Littlejohn, Rebecca O.; Pfundt, Rolph; Mercimek-Andrews, Saadet; Stegmann, Alexander P.A.; Kant, Sarina G.; McLean, Scott; Joss, Shelagh; Swagemakers, Sigrid M.A.; Douzgou, Sofia; Wall, Steven A.; Küry, Sebastian; Calpena, Eduardo; Koelling, Nils; McGowan, Simon J.; Twigg, Stephen R.F.; Mathijssen, Irene M.J.; Nellaker, Christoffer; Brunner, Han G.; Wilkie, Andrew O.M.; Medical and Molecular Genetics, School of MedicineNext-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2.